首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted CO2–water–rock interaction experiments to elucidate the dissolution characteristics and geochemical trapping potential of three different altered andesitic to rhyolitic tuffaceous rocks (Tsugawa, Ushikiri and Daijima tuffaceous rock) relative to fresh mid-ocean ridge basalt. The experiments were performed under 1 MPa CO2 pressure to reproduce the water–rock–CO2 interactions in CO2 storage situations. Basalt showed high acid neutralization potential and rapid dissolution of silicate minerals. Two of the tuffaceous rocks (Ushikiri and Daijima) showed relatively high solubility trapping potential, mainly due to the dissolution of carbonate minerals in the andesitic Ushikiri tuffaceous rock and the ion-exchange reaction with zeolite minerals in the rhyolitic Daijima tuffaceous rock. The mineral trapping potential of the Ushikiri tuffaceous rock was found to be relatively high, due to the rapid dissolution of Mg- and Ca-bearing silicate minerals. Our experimental results suggest that regions of porous and andesitic tuffaceous rock hold global promise as CO2 storage sites.  相似文献   

2.
《Resource Geology》2018,68(1):93-100
CO2 sequestration into saline aquifers is considered to be one of the most promising options for reducing industrial CO2 emissions to the atmosphere. However, there are still many uncertainties regarding the storage of CO2 in the subsurface because of a lack of knowledge about CO2–water–rock interaction within CO2 reservoirs and the potential risk of CO2 leakage. In this study, we construct a semi‐open type experimental system that can reproduce the interactions under conditions close to those of actual CO2 reservoirs. Using the system, we conduct CO2–water–rock interaction experiments for 8 months to monitor the long‐term reaction and the mobilization of harmful metal elements. Altered tuffaceous rock is used in the experiment because these tuffaceous rock formations (called “Green Tuff”) are a potential candidate for CO2 storage in Japan. The results show that the major‐element water composition will converge to the point where host rock dissolution and secondary mineral precipitation are balanced; then, the interaction will proceed under a certain groundwater composition. In addition, we found that groundwater contamination by some metal elements (Ni, Ba, and Mn) may reach unsafe levels for drinking water as a result of CO2‐water–rock interaction.  相似文献   

3.
Geological sequestration of CO2 is one of the options studied to reduce greenhouse gas emissions. Although the feasibility of this concept is proven, apart from literature data on modelling still little is known about the CO2–water–rock interactions induced by CO2-injection.To evaluate the effect of CO2–water–rock interactions on three sandstone aquifers in NE-Belgium an experimental setup was built. Eighteen experiments were performed in which sandstones were exposed to supercritical CO2. CO2–water–rock interactions were deduced from the evolution of aqueous concentrations of 25 species and a thorough characterisation of the sandstones before and after treatment. The results show that dissolution of ankerite/dolomite and Al-silicates could enhance porosity/permeability. The observed precipitation of end-member carbonates could increase storage capacity if it exceeds carbonate dissolution. Precipitation of the latter and of K-rich clays as observed, however, can hamper the injection.  相似文献   

4.
《Applied Geochemistry》2002,17(4):455-474
In a recent survey of the spring waters of the Genova province, many neutral Mg–HCO3 waters and some high-pH, Ca–OH waters were found in association with serpentinites. All the springs are of meteoric origin as indicated by the stable isotopes of water and dissolved N2 and Ar. Interaction of these meteoric waters with serpentinites determines a progressive evolution in the chemistry of the aqueous phase from an immature Mg-rich, SO4–Cl facies of low salinity to an intermediate Mg–HCO3 facies (pH 7.0–8.5, PCO210−3.5–10−2.5 bar, Eh 150–250 mV), and to a mature Ca–OH facies (pH 10–12, PCO2 10−9.4−10−10.6 bar, Eh-390 to-516 mV). The irreversible water–rock mass transfer leading to these chemical changes in the aqueous phase was simulated through reaction path modeling, assuming bulk dissolution of a local serpentinite, and the precipitation of gibbsite, goethite, calcite, hydromagnesite, kaolinite, a montmorillonite solid mixture, a saponite solid mixture, sepiolite, and serpentine. The simulation was carried out in two steps, under open-system and closed-system conditions with respect to CO2, respectively. The calculated concentrations agree with analytical data, indicating that the computed water-rock mass transfer is a realistic simulation of the natural process. Moreover, the simulation elucidates the role of calcite precipitation during closed-system serpentinite dissolution in depleting the aqueous solution of C species, allowing the concurrent increment in Ca and the acquisition of a Ca–OH composition. Calcium–OH waters, due to their high pH, tend to absorb CO2, precipitating calcite. Therefore, these waters might be used to sequester anthropogenic CO2, locally preventing environmental impact to the atmosphere.  相似文献   

5.
Carbonate rock outcrops cover 9%–16% of the continental area and are the principal source of the dissolved inorganic carbon (DIC) transferred by rivers to the oceans, a consequence their dissolution. Current estimations suggest that the flux falls between 0.1–0.6 PgC/a. Taking the intermediate value (0.3 PgC/a), it is equal to 18% of current estimates of the terrestrial vegetation net carbon sink and 38% of the soil carbon sink. In China, the carbon flux from carbonate rock dissolution is estimated to be 0.016 PgC/a, which accounts for 21%, 87.5%–150% and 2.3 times of the forest, shrub and grassland net carbon sinks respectively, as well as 23%–40% of the soil carbon sink flux. Carbonate dissolution is sensitive to environmental and climatic changes, the rate being closely correlated with precipitation, temperature, also with soil and vegetation cover. HCO3- in the water is affected by hydrophyte photosynthesis, resulting in part of the HCO3? being converted into DOC and POC, which may enhance the potential of carbon sequestration by carbonate rock dissolution. The possible turnover time of this carbon is roughly equal to that of the sea water cycle (2000a). The uptake of atmospheric/soil CO2 by carbonate rock dissolution thus plays an important role in the global carbon cycle, being one of the most important sinks. A major research need is to better evaluate the net effect of this sink in comparison to an oceanic source from carbonate mineral precipitation.  相似文献   

6.
Experiments on water solubility in forsterite in the systems Mg2SiO4–K2Mg(CO3)2–H2O and Mg2SiO4–H2O–C were conducted at 7.5–14.0 GPa and 1200–1600 °C. The resulting crystals contain 448 to 1480 ppm water, which is 40–70% less than in the forsterite–water system under the same conditions. This can be attributed to lower water activity in the carbonate-bearing melt. The water content of forsterite was found to vary systematically with temperature and pressure. For instance, at 14 GPa in the system forsterite–carbonate–H2O the H2O content of forsterite drops from 1140 ppm at 1200 °C to 450 ppm at 1600 °C, and at 8 GPa it remains constant or increases from 550 to 870 ppm at 1300–1600 °C. Preliminary data for D-H-bearing forsterite are reported. Considerable differences were found between IR spectra of D-H- and H-bearing forsterite. The results suggest that CO2 can significantly affect the width of the olivine-wadsleyite transition, i.e., the 410-km seismic discontinuity, which is a function of the water content of olivine and wadsleyite.  相似文献   

7.
Dissolution?Cprecipitation phenomena induced by CO2 injection to Altmark Permian sandstone were observed through laboratory experiments carried out under simulated reservoir conditions (125?°C and 50 bars of pressure). The rock sample was collected from the Altmark gas reservoir, which is being considered for enhanced gas recovery. Two sets of experiments were performed with pulverized rock samples in a closed batch reactor with either pure water (run 1) or 3?M aqueous NaCl solution (run 2) and reacted with injected CO2 for 3, 5, and 9?days. The liquid samples were analyzed by inductively coupled plasma optical emission spectroscopy and total reflection X-ray fluorescence, where the latter proved to be a feasible alternative to conventional analytical techniques, especially since only small sample volumes (about 10???l) are needed. Chemical analysis for both fluids (water and NaCl brine) indicated a significant dissolution of calcite and anhydrite in the solution, which might be a crucial process during CO2 injection. The brine solution enhanced the dissolution of calcite and anhydrite compared to pure water at the beginning of the reaction. Moreover, the progressive higher Si4+/Al3+ molar ratios (in average by a factor of 3) in the brine experiments indicated quartz dissolution. Thermodynamic calculations of mineral saturation indices highlighted the dissolution of the Ca-bearing minerals, which was in agreement with experimental results. Modeling enabled an evaluation of the dissolution processes of minerals in a low-salinity region, yet hindrances to model more saline conditions emphasize the need for further laboratory studies in order to parameterize models for deep aquifer conditions.  相似文献   

8.
A long-term (up to 10 ka) geochemical change in saline aquifer CO2 storage was studied using the TOUGHREACT simulator, on a 2-dimensional, 2-layered model representing the underground geologic and hydrogeologic conditions of the Tokyo Bay area that is one of the areas of the largest CO2 emissions in the world. In the storage system characterized by low permeability of reservoir and cap rock, the dominant storage mechanism is found to be solubility trapping that includes the dissolution and dissociation of injected CO2 in the aqueous phase followed by geochemical reactions to dissolve minerals in the rocks. The CO2–water–rock interaction in the storage system (mainly in the reservoir) changes the properties of water in a mushroom-like CO2 plume, which eventually leads to convective mixing driven by gravitational instability. The geochemically evolved aqueous phase precipitates carbonates in the plume front due to a local rise in pH with mixing of unaffected reservoir water. The carbonate precipitation occurs extensively within the plume after the end of its enlargement, fixing injected CO2 in a long, geologic period.Dawsonite, a Na–Al carbonate, is initially formed throughout the plume from consumption of plagioclase in the reservoir rock, but is found to be a transient phase finally disappearing from most of the CO2-affected part of the system. The mineral is unstable relative to more common types of carbonates in the geochemical evolution of the CO2 storage system initially having formation water of relatively low salinity. The exception is the reservoir-cap rock boundary where CO2 saturation remains very high throughout the simulation period.  相似文献   

9.
In order to evaluate the extent of CO2–water–rock interactions in geological formations for C sequestration, three batch experiments were conducted on alkali feldspars–CO2–brine interactions at 150–200 °C and 300 bars. The elevated temperatures were necessary to accelerate the reactions to facilitate attainable laboratory measurements. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. SEM, TEM and XRD analysis of reaction products showed extensive dissolution features (etch pits, channels, kinks and steps) on feldspars and precipitation of secondary minerals (boehmite, kaolinite, muscovite and paragonite) on feldspar surfaces. Therefore, these experiments have generated both solution chemistry and secondary mineral identity. The experimental results show that partial equilibrium was not attained between secondary minerals and aqueous solutions for the feldspar hydrolysis batch systems. Evidence came from both solution chemistry (supersaturation of the secondary minerals during the entire experimental duration) and metastable co-existence of secondary minerals. The slow precipitation of secondary minerals results in a negative feedback in the dissolution–precipitation loop, reducing the overall feldspar dissolution rates by orders of magnitude. Furthermore, the experimental data indicate the form of rate laws greatly influence the steady state rates under which feldspar dissolution took place. Negligence of both the mitigating effects of secondary mineral precipitation and the sigmoidal shape of rate–ΔGr relationship can overestimate the extent of feldspar dissolution during CO2 storage. Finally, the literature on feldspar dissolution in CO2-charged systems has been reviewed. The data available are insufficient and new experiments are urgently needed to establish a database on feldspar dissolution mechanism, rates and rate laws, as well as secondary mineral information at CO2 storage conditions.  相似文献   

10.
The potential for metal release associated with CO2 leakage from underground storage formations into shallow aquifers is an important consideration in assessment of risk associated with CO2 sequestration. Metal release can be driven by acidification of groundwaters caused by dissolution of CO2 and subsequent dissociation of carbonic acid. Thus, acidity is considered one of the main drivers for water quality degradation when evaluating potential impacts of CO2 leakage. Dissolution of carbonate minerals buffers the increased acidity. Thus, it is generally thought that carbonate aquifers will be less impacted by CO2 leakage than non-carbonate aquifers due to their high buffering potential. However, dissolution of carbonate minerals can also release trace metals, often present as impurities in the carbonate crystal structure, into solution. The impact of the release of trace metals through this mechanism on water quality remains relatively unknown. In a previous study we demonstrated that calcite dissolution contributed more metal release into solution than sulfide dissolution or desorption when limestone samples were dissolved in elevated CO2 conditions. The study presented in this paper expanded our work to dolomite formations and details a thorough investigation on the role of mineral composition and mechanisms on trace element release in the presence of CO2. Detailed characterization of samples from dolomite formations demonstrated stronger associations of metal releases with dissolution of carbonate mineral phases relative to sulfide minerals or surface sorption sites. Aqueous concentrations of Sr2+, CO2+, Mn2+, Ni2+, Tl+, and Zn2+ increased when these dolomite rocks were exposed to elevated concentrations of CO2. The aqueous concentrations of these metals correlate to aqueous concentrations of Ca2+ throughout the experiments. All of the experimental evidence points to carbonate minerals as the dominant source of metals from these dolomite rocks to solution under experimental CO2 leakage conditions. Aqueous concentrations of Ca2+ and Mg2+ predicted from numerical simulation of kinetic dolomite dissolution match those observed in the experiments when the surface area is three to five orders of magnitude lower than the surface area of the samples measured by gas adsorption.  相似文献   

11.
《Applied Geochemistry》1999,14(2):237-254
Two major types of groundwater can be readily distinguished in the Variscian crystalline basement of the Black Forest in S–W Germany. Saline thermal water utilized in spas has its origin in 3–4 km deep reservoirs and developed its composition by 3 component mixing of surface freshwater, saltwater (of ultimately marine origin) and a water–rock reaction component. In contrast to the thermal water, CO2-rich mineral water, tapped and bottled from many wells in the Black Forest, has low salinities but a TDS distribution similar to that of thermal water. It developed its chemical composition entirely by reaction of CO2-rich water with the gneissic or granitic aquifer rock matrix. Particularly important is the contribution of various plagioclase dissolution and weathering reactions that may, at some locations, involve precipitation and dissolution of secondary calcite. Sodium/Ca ratios of water and of rock forming plagioclase in the basement rocks suggests that plagioclase weathering is strongly incongruent. Calcium is released to the water, whereas Na remains fixed to the albite feldspar component.The major element composition of 192 water samples used in this study also indicates a clear vertical stratification of the type of water chemistry; Ca–HCO3 near the surface, Na–Ca–HCO3–SO4 at intermediate depth and Na–Ca–Cl at great depth.The mean permeability of Black Forest granite is about K=10−6 m/s; it is significantly lower in gneisses (gneiss: mean K=5×10−8 m/s) leading to focused flow through granite. Highly permeable fracture and fault zones, particularly in granite, are utilized by high-TDS saline deep groundwater as ascent channels and flow paths. Although spatially closely associated, the topography driven upwelling system of saline deep water and the near-surface flow system of CO2-rich mineral waters are hydraulically and chemically unconnected.  相似文献   

12.
Carbon dioxide enhanced oil recovery (CO2-EOR) has been widely applied to the process of carbon capture, utilization, and storage (CCUS). Here, we investigate CO2–oil–water–rock interactions under reservoir conditions (100 °C and 24 MPa) in order to understand the fluid–rock interactions following termination of a CO2-EOR project. Our experimental results show that CO2-rich fluid remained the active fluid controlling the dissolution–precipitation processes in an oil-undersaturated sandstone reservoir; e.g., the dissolution of feldspar and calcite, and the precipitation of kaolinite as well as solid phases comprising O, Si, Al, Na, C, and Ti. Mineral dissolution rates were reduced in the case that mineral surfaces were coated by oil. Mineral wettability and composition, and oil saturation were the main controls on the exposed surface area of grains, and mineral wettability in particular led to selective dissolution. In addition, the permeability of the reservoir decreased substantially due to the precipitation of kaolinite and solid-phase particles, and due to the clogging of less soluble mineral particles released by the dissolution of K-feldspar and carbonate cement, whereas porosity increased. The results provide insight into potential formation damage resulting from CO2-EOR projects.  相似文献   

13.
《Applied Geochemistry》2004,19(8):1217-1232
Laboratory experiments were conducted with volcanic ash soils from Mammoth Mountain, California to examine the dependence of soil dissolution rates on pH and CO2 (in batch experiments) and on oxalate (in flow-through experiments). In all experiments, an initial period of rapid dissolution was observed followed by steady-state dissolution. A decrease in the specific surface area of the soil samples, ranging from 50% to 80%, was observed; this decrease occurred during the period of rapid, initial dissolution. Steady-state dissolution rates, normalized to specific surface areas determined at the conclusion of the batch experiments, ranged from 0.03 μmol Si m−2 h−1 at pH 2.78 in the batch experiments to 0.009 μmol Si m−2 h−1 at pH 4 in the flow-through experiments. Over the pH range of 2.78–4.0, the dissolution rates exhibited a fractional order dependence on pH of 0.47 for rates determined from H+ consumption data and 0.27 for rates determined from Si release data. Experiments at ambient and 1 atm CO2 demonstrated that dissolution rates were independent of CO2 within experimental error at both pH 2.78 and 4.0. Dissolution at pH 4.0 was enhanced by addition of 1 mM oxalate. These observations provide insight into how the rates of soil weathering may be changing in areas on the flanks of Mammoth Mountain where concentrations of soil CO2 have been elevated over the last decade. This release of magmatic CO2 has depressed the soil pH and killed all vegetation (thus possibly changing the organic acid composition). These indirect effects of CO2 may be enhancing the weathering of these volcanic ash soils but a strong direct effect of CO2 can be excluded.  相似文献   

14.
《Applied Geochemistry》2001,16(7-8):745-758
The physical–chemical characteristics of the groundwater in the Baza–Caniles detrital aquifer system indicate that a wide diversity of hydrochemical conditions exists in this semiarid region, defining geochemical zones with distinct groundwater types. The least mineralized water is found closest to the main recharge zones, and the salinity of the water increases significantly with depth towards the center of the basin. Geochemical reaction models have been constructed using water chemistry data along flow paths that characterize the different sectors of the aquifer system, namely: Quaternary aquifer, unconfined sector and shallow and deep confined sectors of the Mio–Pliocene aquifer. Geochemical mass–balance calculations indicate that the dominant groundwater reaction throughout the detrital system is dedolomitisation (dolomite dissolution and calcite precipitation driven by gypsum dissolution); this process is highly developed in the central part of the basin due to the abundance of evaporites. Apart from this process, there are others which influence the geochemical zoning of the system. In the Quaternary aquifer, which behaves as a system open to gases and which receives inputs of CO2 gas derived from the intensive farming in the area, the interaction of the CO2 with the carbonate matrix of the aquifer produces an increase in the alkalinity of the water. In the shallow confined sector of the Mio–Pliocene aquifer, the process of dedolomitisation evolves in a system closed to CO2 gas. Ca2+/Na+ cation exchange and halite dissolution processes are locally important, which gives rise to a relatively saline water. Finally, in the deep confined sector, a strongly reducing environment exists, in which the presence of H2S and NH+4 in the highly mineralized groundwater can be detected. In this geochemical zone, the groundwater system is considered to be closed to CO2 gas proceeding from external sources, but open to CO2 from oxidation of organic matter. The geochemical modeling indicates that the chemical characteristics of this saline water are mainly due to SO4 dissolution, dedolomitisation and SO4 reduction, coupled with microbial degradation of lignite.  相似文献   

15.
In the process of steam stimulation exploitation of viscous crude oil, the injected water, at high temperature and under high pressure, reacts intensively with the host rock. This kind of water–rock interaction in Liaohe Shuguang Oil Field was studied on the basis of analysis of water composition changes, laboratory experiments, mineral saturation indices analysis, and mass balance calculation. Compared with the injected water, the changes of the composition of discharged water are mainly the distinct decrease of pH, Na+, SiO2 and Cl, as well as the increase of K+, Ca2+, Mg2+, SO 4 2− and HCO 3 . Laboratory experiments under field conditions showed: the dissolution sequence of minerals quantitatively is quartz>potassium feldspar>albite, and the main change of clay minerals is the conversion of kaolinite to analcime. Mass balance calculation indicated during the process of steam stimulation, large quantities of analcime are precipitated with the dissolution of large amounts of quartz, kaolinite, potassium feldspar, and CO2. These results correlated very well with the experimental results. The calculated results of Liaohe Shuguang Oil Field showed that during the steam stimulation for viscous crude oil, the amounts of minerals dissolved (precipitated) are huge. To control the clogging of pore spaces of oil reservoirs, increased study of water–rock interaction is needed.  相似文献   

16.
《Ore Geology Reviews》2003,22(1-2):17-39
Many talc deposits occur in the Hwanggangri Mineralized Zone (HMZ) in dolomitic marbles of the Cambro-Ordovician Samtaesan Formation within 1 km of the contact with the Cretaceous Muamsa Granite. Talc commonly forms fine-grained, fibrous aggregates, or pseudomorphs after tremolite; abundant tremolite is included as impurities in the talc ore. Talc generally was derived from tremolite in calc-silicate rock within the dolomitic marble. Calc-silicate rock, consisting mainly of tremolite and diopside, was generated from silicic metasomatism during the prograde stage, which promoted decarbonation reactions until dolomite was exhausted locally. Hydrothermal alteration of calc-silicate rock to talc is marked by the addition of Mg and Si, and the leaching of Ca; Cr, Co, and Ni were relatively immobile during the retrograde stage. Contact metamorphism related to the granite intrusion generated the successive appearance of tremolite, diopside, and forsterite, or wollastonite-bearing assemblages in the marble, depending on the bulk rock composition. The XCO2 content of the metamorphic fluids rose initially above XCO2=0.6, and decreased steadily toward a water-rich composition with increasing temperature above 600 °C in the calcitic marble, while buffered reaction of the dolomitic marble occurred at higher XCO2 conditions above 600 °C. Talc mineralization developed under metastable conditions with infiltration of large amounts of igneous fluids along a fault-shattered zone during the retrograde stage and is characterized by the loss of Ca2+ with the addition of Mg2+. Oxygen and carbon isotopic variations of carbonate and calc-silicate minerals are in agreement with theoretical relationships determined for decarbonation products of contact metamorphism. Talc formation temperatures obtained from oxygen isotope fractionation, TXCO2 relationships, and activity diagrams range from 380 to 400 °C.  相似文献   

17.
The characteristics and formation mechanism of calcite cements in the tight sandstone of the Jurassic Lianggaoshan Formation in the northeastern Central Sichuan Basin were analysed using petrographic and isotopic techniques. In the tight sandstone of the Lianggaoshan Formation, cements are mostly calcite and occur as poikilitic, pore-filling, fracture-filling and replacement of clastic particles. Contents of Al, Si, Fe and Mn in the poikilitic calcites are significantly less than that in the dissolution pore-filling and metasomatic calcites. Three stages (early, middle and late) of authigenic calcites correspond to temperature ranges of <60, 60–100 and ≥100?°C, respectively, with most calcite cements formed under lower temperature (<100?°C) conditions. The δ18O values of the early–middle authigenic calcites are in equilibrium with connate water, and the δ18O values of late calcites are depleted in 18O indicating equilibrium at higher temperatures. The early authigenic calcites precipitated in a relatively open system associated with CO2 from bacterial fermentation at an immature to low-mature stage, and a Ca2+- and alkaline-rich environment owing to hydration–hydrolysis and dissolution of silicate minerals during phase A of eodiagenesis. The middle–late authigenic calcites precipitated in a relatively closed system with CO2 from decarboxylation of organic acids and Ca2+ from dissolution of silicate minerals and transformation of clay minerals during phase B of eodiagenesis to mesodiagenesis. Calcite cements mainly occur in the medium and fine sandstones of sand flats and beach bars. Authigenic calcite dissolution is extremely weak, and calcite cementation is pore-space destructive.  相似文献   

18.
The assessment of the environmental impacts of CO2 geological storage requires the investigation of potential CO2 leakages into fresh groundwater, particularly with respect to protected groundwater resources. The geochemical processes and perturbations associated with a CO2 leak into fresh groundwater could alter groundwater quality: indeed, some of the reacting minerals may contain hazardous constituents, which might be released into groundwater. Since the geochemical reactions may occult direct evidence of intruding CO2, it is necessary to characterize these processes and identify possible indirect indicators for monitoring CO2 intrusion. The present study focuses on open questions: Can changes in water quality provide evidence of CO2 leakage? Which parameters can be used to assess impact on freshwater aquifers? What is the time scale of water chemistry degradation in the presence of CO2? The results of an experimental approach allow selecting pertinent isotope tracers as possible indirect indicators of CO2 presence, opening the way to devise an isotopic tracing tool.The study area is located in the Paris Basin (France), which contains deep saline formations identified as targets by French national programs for CO2 geological storage. The study focuses on the multi-layered Albian fresh water aquifer, confined in the central part of the Paris Basin a major strategic potable groundwater overlying the potential CO2 storage formations. An experimental approach (batch reactors) was carried out in order to better understand the rock–water–CO2 interactions with two main objectives. The first was to assess the evolution of the formation water chemistry and mineralogy of the solid phase over time during the interaction. The second concerned the design of an isotopic monitoring program for freshwater resources potentially affected by CO2 leakage. The main focus was to select suitable environmental isotope tracers to track water rock interaction associated with small quantities of CO2 leaking into freshwater aquifers.In order to improve knowledge on the Albian aquifer, and to provide representative samples for the experiments, solid and fluid sampling campaigns were performed throughout the Paris Basin. Albian groundwater is anoxic with high concentrations of Fe, a pH around 7 and a mineral content of 0.3 g L−1. Macroscopic and microscopic solid analyses showed a quartz-rich sand with the presence of illite/smectite, microcline, apatite and glauconite. A water–mineral–CO2 interaction batch experiment was used to investigate the geochemical evolution of the groundwater and the potential release of hazardous trace elements. It was complemented by a multi-isotope approach including δ13CDIC and 87Sr/86Sr. Here the evolution of the concentrations of major and trace elements and isotopic ratios over batch durations from 1 day to 1 month are discussed. Three types of ion behavior are observed: Type I features Ca, SiO2, HCO3, F, PO4, Na, Al, B, Co, K, Li, Mg, Mn, Ni, Pb, Sr, Zn which increased after initial CO2 influx. Type II comprises Be and Fe declining at the start of CO2 injection. Then, type III groups element with no variation during the experiments like Cl and SO4. The results of the multi-isotope approach show significant changes in isotopic ratios with time. The contribution of isotope and chemical data helps in understanding geochemical processes involved in the system. The isotopic systems used in this study are potential indirect indicators of CO2–water–rock interaction and could serve as monitoring tools of CO2 leakage into an aquifer overlying deep saline formations used for C sequestration and storage.  相似文献   

19.
The Shishugou Group, which consists of Middle Jurassic Toutunhe Formation and Upper Jurassic Qigu Formation, is currently an important hydrocarbon exploration target in the Fukang Sag of Junggar Basin, China. The Shishugou Group sandstones experienced a complex diagenetic history with deep burial (3600–5800 m) to develop low–ultralow porosity and permeability reservoir with some high-quality reservoirs found in the tight sandstones owing to the reservoir heterogeneity. This integrated petrographic and geochemical study aims to unravel the origin and alteration of calcite cement in the Shishugou Group sandstones and predict fluid–rock interaction and porosity evolution. The Shishugou Group sandstones (Q43.8F7.4R48.8) have a dominant calcite cement with strong heterogeneity forming in two generations: poikilotopic, pore-filling masses that formed at an early diagenetic stage and isolated rhombs or partial grain replacements that formed at a late stage. The Shishugou Group, which are lacustrine sediments formed in low–medium salinity lake water in a semiarid–arid climatic environment, provided the alkaline diagenetic environment needed for precipitation of chlorite and early calcite cements in early diagenesis. The Ca2+ of the pore-filling calcite cements was sourced from weathering or dissolution of volcanic clasts in the sediment source or during transport in under oxidising conditions. The δ18OV-PDB and δ13CV-PDB values of calcite were significantly controlled by distance from the top unconformity and underlying coal-bearing stratum with carbon sourced from atmospheric CO2, and organic matter. The early carbonate cement inhibited burial compaction producing intergranular pore spaces with enhanced reservoir properties by late dissolution under acidic conditions. Anhydrite cement reflects reaction of organic acid and hydrocarbon with the sandstones and is associated with fluid migration pathways. The fluid–rock interactions and porosity evolution of the tight deep sandstones produced secondary pores that filled with hydrocarbon charge that forms this deep high-quality reservoir.  相似文献   

20.
Crushed rock from two caprock samples, a carbonate-rich shale and a clay-rich shale, were reacted with a mixture of brine and supercritical CO2 (CO2–brine) in a laboratory batch reactor, at different temperature and pressure conditions. The samples were cored from a proposed underground CO2 storage site near the town of Longyearbyen in Svalbard. The reacting fluid was a mixture of 1 M NaCl solution and CO2 (110 bar) and the water/rock ratio was 20:1. Carbon dioxide was injected into the reactors after the solution had been bubbled with N2, in order to mimic O2-depleted natural storage conditions. A control reaction was also run on the clay-rich shale sample, where the crushed rock was reacted with brine (CO2-free brine) at the same experimental conditions. A total of 8 batch reaction experiments were run at temperatures ranging from 80 to 250 °C and total pressures of 110 bar (∼40 bar for the control experiment). The experiments lasted 1–5 weeks.Fluid analysis showed that the aqueous concentration of major elements (i.e. Ca, Mg, Fe, K, Al) and SiO2 increased in all experiments. Release rates of Fe and SiO2 were more pronounced in solutions reacted with CO2–brine as compared to those reacted with CO2-free brine. For samples reacted with the CO2–brine, lower temperature reactions (80 °C) released much more Fe and SiO2 than higher temperature reactions (150–250 °C). Analysis by SEM and XRD of reacted solids also revealed changes in mineralogical compositions. The carbonate-rich shale was more reactive at 250 °C, as revealed by the dissolution of plagioclase and clay minerals (illite and chlorite), dissolution and re-precipitation of carbonates, and the formation of smectite. Carbon dioxide was also permanently sequestered as calcite in the same sample. The clay-rich shale reacted with CO2–brine did not show major mineralogical alteration. However, a significant amount of analcime was formed in the clay-rich shale reacted with CO2-free brine; while no trace of analcime was observed in either of the samples reacted with CO2–brine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号