首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This study reports on the mobility and retention of trace elements in cassiterite tailings at the inactive Jumna mill, tropical north Queensland. Since the 1980s, the uncapped tailings have developed laterally discontinuous Fe-rich hardpans, which are located in the higher parts of gently sloping tailings masses and at the top (<50 cm) of the tailings piles. Hardpan-cemented tailings comprise thin layers (typically ∼0.2–2 mm thick) of HFO (hydrous ferric oxides) and sulfate efflorescences cementing tailings grains. In comparison to the tailings, the hardpan-cemented tailings contain significantly higher median As, Ca, Cd, Co, Cu, Fe, In, Mn, Mo, Stotal, Th, U, Y and Zn values. Partial leaching studies of tailings and pond water analyses indicate that wetting and acidification of Fe-cemented tailings removes significant proportions of trace elements into pore and surface waters. Tin shows no mobility due to the presence of weathering-resistant cassiterite (SnO2) and, As and Pb display limited mobility possibly due to their coprecipitation with jarosite-type phases and HFO materials at the top of the tailings profile. By contrast, the trace elements Cd, Ce, Cu, La, Ni, Pb, U and Zn display the greatest mobility, possibly due to their incorporation in soluble sulfate efflorescences and sorption onto mineral and HFO surfaces. Hence, the Fe-rich hardpans do not protect the sulfidic tailings from further oxidation nor do they cause permanent sequestration of trace elements.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(19-20):3379-3394
The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25°C), and in the TMF after burial (5–49 day aging tests). The aging tests were run at, 50, 25 and 4°C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates1 having Fe/As ratios of less that 3–5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9.Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5–6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids.The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25°C, and may equal zero at all times in the TMF at 4°C. Consistent with a kinetic model that describes the rate of breakdown of scorodite to form hydrous ferric oxide, the rate of release of dissolved arsenate to tailings porewaters from slake limed tailings: (1) is proportional to pH above pH 6–7; (2) decreases exponentially as the total molar Fe/As ratio of tailings raffinates is increased from 1/1 to greater than 5/1; and (3) is proportional to temperature with an average Arrhenius activation energy of 13.4 ± 4.2 kcal/mol.Study results suggest that if ferric sulfate and slaked lime are added in the tailings neutralization circuit to give a raffinate Fe/As molar ratio of at least 3–5 and a nominal (initial) pH of 8 (final pH of 7–8), arsenic and nickel concentrations of 2 mg/L or less, are probable in porewaters of individual tailings in the TMF for 50 to 10,000 yrs after tailings disposal. However, the tailings will be mixed in the TMF, which will contain about 35% tailings with Fe/As = 3.0, and 65% tailings with Fe/As = 5.0–7.7. Thus, it seems likely that average arsenic pore water concentrations in the TMF may not exceed 1 mg/L.  相似文献   

3.
《Applied Geochemistry》2005,20(5):947-959
At the McClean Lake Operation in the Athabasca Basin of northern Saskatchewan, the untreated acid raffinate solutions associated with U mill tailings contain up to 700 mg/L dissolved As. To reduce the concentration of As and other contaminants in acid tailing slurries at the JEB mill at McClean Lake, ferric sulfate may be added to the acid raffinates to assure that their molar Fe/As ratio equals or exceeds 3. Tailings slurries are then neutralized with lime to pH 4, and subsequently to pH 7–8. The neutralized tailings contain minerals from the original ore, which are chiefly quartz, illite, kaolinite and chlorite, and precipitated (secondary) minerals that include gypsum, scorodite, annabergite, hydrobasaluminite and ferrihydrite. Most of the As is associated with the secondary arsenate minerals, scorodite and annabergite. However, a few percent is adsorbed and/or co-precipitated, mainly by ferrihydrite. Of major concern to provincial and federal regulators is the risk that significant amounts of As might be released from the tailings to pore waters after their subaqueous disposal in the tailings management facility. A laboratory study was performed to address this issue, measuring readily desorbed As using a method known as equilibrium partitioning in closed systems (EPICS). The EPICS method was selected because it employs a leaching solution that, except for its As concentration, is identical in composition to the neutralized raffinate in contact with the tailings. Laboratory experiments and modeling results demonstrated that the As that could be readily released to pore waters is about 0.2% of the total As in the tailings. Long-term, such releases may contribute no more than a few mg/L of dissolved As to tailings pore waters.  相似文献   

4.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

5.
Metals released from oxidation and weathering of sulphide minerals in mine tailings are to a high degree retained at deeper levels within the tailings themselves. To be able to predict what could happen in the future with these secondarily retained metals, it is important to understand the retention mechanisms. In this study an attempt to use laser ablation high-resolution ICP-MS (LA-ICP-SMS) to quantify enrichment of trace elements on pyrite surfaces in mine tailings was performed. Pyrite grains were collected from a profile through the pyrite-rich tailings at the Kristineberg mine in northern Sweden. At each spot hit by the laser, the surface layer was analyzed in the first shot, and a second shot on the same spot gave the chemical composition of the pyrite immediately below. The crater diameter for a laser shot was known, and by estimating the crater depth and total pyrite surface, the total enrichment on pyrite grains was calculated. Results are presented for As, Cd, Co, Cu, Ni and Zn. The results clearly show that there was an enrichment of As, Cd, Cu and Zn on the pyrite surfaces below the oxidation front in the tailings, but not of Co and Ni. Arsenic was also enriched on the pyrite grains that survived in the oxidized zone. Copper has been enriched on pyrite surfaces in unoxidized tailings in the largest amount, followed by Zn and As. However, only 1.4 to 3.1% of the Cd and Zn released by sulphide oxidation in the oxidized zone have been enriched on the pyrite surfaces in the unoxidized tailings, but for As and Cu corresponding figures are about 64 and 43%, respectively. There were many uncertainties in these calculations, and the results shall not be taken too literally but allowed the conclusion that enrichment on pyrite surfaces is an important process for retention of As and Cu below the oxidation front in pyrite rich tailings. Laser ablation is not a surface analysis technique, but more of a thin layer method, and gives no information on the type of processes resulting in enrichment on the pyrite surfaces. Although only pyrite grains that appeared to be fresh and without surface coatings were used in this study, the possibility that a thin layer of Fe-hydroxides occurred must be considered. Both adsorption to the pyrite directly or to Fe-oxyhydroxides may explain the enrichment of As, Cd, Cu and Zn on the pyrite surfaces, and, in the case of Cu, also the replacement of Fe(II) by Cu(II) in pyrite.  相似文献   

6.
The purpose of this work is to characterize the hydrochemical behavior of acid mine drainages (AMD) and superficial waters from the Adoria mine area (Northern Portugal). Samples of superficial and mine drainage water were collected for one year, bi-monthly, with pH, temperature, Eh, conductivity and HCO3 determined in situ with chemical analyses of SO4, Ca, K, Mg, Na, Cl, Ag, As, Bi, Co, Cu, Fe, Mn, Ni, Pb, Zn and Cd. In the mine, there are acidic waters, with low pH and significant concentrations of SO4, and metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni), while in the superficial natural stream waters outside the mine, the pH is close to neutral, with low conductivity and lower metal concentrations. The stream waters inside the mine influence are intermediate in composition between AMD and natural stream waters outside the mine influence. Principal Component Analysis (PCA) shows a clear separation between AMD galleries and AMD tailings, with tailings having a greater level of contamination.  相似文献   

7.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   

8.
《Applied Geochemistry》2003,18(9):1373-1386
The Baccu Locci stream catchment (Sardinia, Italy) is affected by serious As contamination as a consequence of past mining. The presence of both point and widespread sources of contamination (waste-rock dumps and flotation tailings, respectively) strongly affects surface water chemistry, and produces high As concentrations (hundreds of μg l−1) in stream waters. Water chemistry of the Baccu Locci stream changes considerably over a distance of about 10 km as a consequence of various, locally concomitant, processes acting along the stream course: (1) mixing with metal-rich SO4 waters; (2) dissolution/precipitation of metal-bearing phases; (3) mixing with HCO3-dominated lake waters; (4) gypsum dissolution coupled with calcite precipitation; (5) mixing with dilute surface and/or ground waters. In contrast to metals (e.g. Pb, Cu, Zn and Cd), whose dissolved concentrations rapidly decrease downstream of the mined area through (co-)precipitation/adsorption mechanisms, As concentrations tend to gradually increase (up to 0.9 mg l−1) along the stream course as far as the alluvial plain, though significant variations are locally observed. This behaviour is mainly due to the higher mobility of As than metals under the near neutral-oxidative conditions occurring in the Baccu Locci stream waters. Results of a leaching test indicate that part of the As contained in the flotation tailings occurs as As(III), which is more mobile and less strongly sorbed than As(V). The As released to the waters by various mechanisms (i.e. release/desorption from the Fe(III)-hydroxides coatings of silicate grains, oxidation of residual arsenopyrite, decomposition of scorodite) tends to remain in solution and to be transported long distances. As a consequence of the widespread presence of highly As-contaminated flotation tailings all over the medium-lower Baccu Locci stream catchment, long-term As contamination is expected.  相似文献   

9.
Arsenic Speciation in a Contaminated Gold Processing Tailings Dam   总被引:1,自引:0,他引:1  
Gold recovery in ores containing arsenopyrite releases significant amounts of arsenic into the environment due to mineral processing and oxidation during storage. The extent of arsenic weathering in a tailings dam has been investigated. Speciation of As in surface and pore waters and pond sediments showed that for gold tailings in the dam, As enrichment took place in the pore water relative to the surface water. In pond sediments As was predominantly present as residual arsenopyrite and partly as a substance co-precipitated with iron hydroxide. The arsenic release from the sediment results from a reductive dissolution of the arsenopyrite and Fe oxides. In the surface water, arsenate and arsenite are the main arsenic species (arsenate is dominant), but in the pore waters methylation processes play a significant role. Arsenic transport is accompanied by the transformation of As into the less toxic compounds (methylated species) co-existing with the most toxic species (arsenite).  相似文献   

10.
《Applied Geochemistry》2001,16(11-12):1377-1386
The heavy metal contamination and seasonal variation of the metals in soils, plants and waters in the vicinity of an abandoned metalliferous mine in Korea were studied. Elevated levels of Cd, Cu, Pb and Zn were found in tailings with averages of 8.57, 481, 4,450 and 753 mg/kg, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Thus, significant levels of the elements in waters and sediments were found up to 3.3 km downstream from the mining site, especially for Cd and Zn. Enriched concentrations of heavy metals were also found in various plants grown in the vicinity of the mining area, and the metal concentrations in plants increased with those in soils. In a study of seasonal variation on the heavy metals in paddy fields, relatively high concentrations of heavy metals were found in rice leaves and stalks grown under oxidizing conditions rather than a reducing environment (P<0.05).  相似文献   

11.
The Mike Horse Mine tailings dam in western Montana was partially breached in 1975 due to heavy rainfall and a failed drainage bypass. Approximately 90,000 tons of metal and arsenic-enriched tailings flowed into Beartrap Creek and the Blackfoot River. The spatial distribution of trace elements As, Cd, Cu, Mn, Pb, and Zn in floodplain alluvium of the upper Blackfoot River were examined along 20 transects in the upper 105 river kilometers downstream from the tailings dam. Trace element concentrations decrease with distance from the failed dam, with As reaching background concentrations 15 km from the Mike Horse dam, Cd and Pb at 21 km, Cu at 31 km, and Mn and Zn at 37 km. Distance from the Mike Horse tailings dam and mine area is the dominating factor in explaining trace element levels, with R 2 values ranging from 0.67 to 0.89. Maximum floodplain trace element concentrations in the upper basin exceed US. EPA ecological screening levels for plants, birds and other mammals, and reflect adverse hazard quotients for exposure to As and Mn for ATV/motorcycle use. Trace element concentrations in channel bank and bed alluvium are similar to concentrations in floodplain alluvium, indicating active transport of trace elements through the river and deposition on the floodplain. The fine fraction (<2 mm) of floodplain alluvium is dominated by sand-sized particles (2.0–0.05 mm), with Cu and Mn significantly correlated with silt-sized (0.05–0.002 mm) alluvium. Ongoing remediation in the headwaters area will not address metal contamination stored downstream in the channel banks and on the floodplain. Additionally, some trace elements (Cu, Mn and Zn) were conveyed farther downstream than were others (As, Cd, Pb).  相似文献   

12.
Monitoring of heavy metal transfers, aerial deposition and fluvial transport to soil, stream sediment and vegetation compartments surrounding two former PbZn mines are reported. Results show that 80–100 a after the closure of the mines relatively large amounts of Cd, Pb, Zn and, in once case, Cu are entering the soil and fluvial systems.Aerial deposition of heavy metals within a 300 m radius of the centre of the tailings heaps is shown to be contributing up to 3.3 kg Cd, 71 kg Cu, 373 kg Pb and 1041 kg Zn annually to the surrounding soil and vegetation compartments. It is shown that more than 4.2 kg Cd/a and 1387 kg Zn/a are being transferred from the tailings heaps via the streams in the form of dissolved load. However, the greatest quantities of Cu (38 kg/a) and Pb (74 kg/a) are transported from the heaps as wash load. Transfers calculated as percentages of the total metal quantities in the tailings heaps highlight the greater relative mobility within the fluvial system of Cd and Zn compared to Cu and Pb. Outside of the tailings heaps, the greatest accumulation of metals is in the surrounding soil, while the smallest was observed to occur in the surrounding mixed grassland vegetation.The most important implications of these findings are in the long-term release and partitioning of pollutant metal species from historic metalliferous mine tailings within the terrestrial and fluvial environments. This information is of major ecotoxicological and agronomic importance and is necessary for the effective reclamation and remediation of such contaminated sites.  相似文献   

13.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   

14.
以广西大厂镇鲁塘铅锌矿尾砂为研究对象,通过淋滤实验研究了不同氧化还原条件下尾砂中Cu、Cd、Zn、Pb和As等元素的活化和迁移规律。结果表明:经高浓度氧化、高浓度还原条件处理的尾矿表现为pH<7的酸性环境,经低浓度氧化环境条件处理的尾砂呈现pH>7的弱酸性至弱碱性环境;尾砂中Cu、Cd元素活化迁移受pH值的影响明显,即高浓度还原和高浓度氧化条件可以促进Cu和Cd元素的迁移,酸性条件对Cu和Cd元素的迁移起到促进作用;Zn与Cd元素存在竞争吸附关系,但二者仍有明显差别;Pb和As元素受到还原条件的影响,能有效促进Pb和As元素的释放迁移。在淋滤实验前期,铅锌矿的表面阻力较小,由于环境酸碱性的改变,初始尾砂对重金属元素的吸附位能发生变化,重金属元素初期迁移能力得到加强;淋滤后期,矿物颗粒表面由于发生氧化还原反应,促使颗粒表面的阻力增加,重金属元素的溶出量减少,迁移能力受到抑制。  相似文献   

15.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   

16.
《Applied Geochemistry》1999,14(6):747-759
A study of O2 penetration and pore water geochemistry of the flooded tailings at Stekenjokk has been performed. The results show that there is a diffusion of elements from the tailings pore water to the overlying water. The presence of elements such as Ca, Mg, S, Si, Ba and Sr are likely the result of diffusion of older process water trapped in the tailings. Oxygen concentrations in the tailings measured with microelectrodes show that there is O2 available down to 16 to 17 mm depth in the tailings. Pore water analyses show that there are subsurface maxima for the elements Cu, Zn, Ni, Co and Cd at depths of 0.25 to 2.75 cm. The highest concentrations of almost all elements were found where previously oxidised material was deposited before the flooding. Lower pH is measured in the uppermost part of the tailings compared with the pond water and the tailings pore water at depth. Oxidation of sulphides in the uppermost part of the tailings is probably occurring. A decrease in oxidation rate can be expected in the future due to deposition of organic material at the tailings surface. Flooding seems to be an efficient remediation method at Stekenjokk.  相似文献   

17.
为探讨富硫化物尾矿酸化及重金属污染特征,选择安徽铜陵水木冲尾矿库浅层(0~90 cm)剖面为研究对象,对其结构特点、矿物组成、重金属(Pb、Cd、Zn、Ni、Cr、Mn、Cu和As)含量及赋存形态进行研究。结果表明,该尾矿库浅层出现分层现象,即表层为强硬化层,向下依次为弱硬化层和松散层,且呈酸性;矿物主要以辉石、长石、云母和石膏为主,由浅及深,金属硫化物及碳酸盐型矿物特征峰呈现增强的趋势;重金属呈现两种富集类型:表层(0~30cm,As、Pb)富集和中部(40~60 cm,Cd、Cu、Mn、Ni、Zn和Cr)富集型,其中Cu、Cd、As污染较为严重。由相关性分析可知,部分金属之间存在一定的伴生性,且p H值是影响重金属迁移的重要因素之一。该尾矿重金属主要以残渣态为主,其中Pb的潜在迁移能力最强,As最弱,顺序为Pb Cd Zn Ni Cr Mn Cu As。  相似文献   

18.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

19.
Small-scale mining and mineral processing at the Webbs Consols polymetallic PbZnAg deposit in northern New South Wales, Australia has caused a significant environmental impact on streams, soils and vegetation. Unconfined waste rock dumps and tailings dams are the source of the problems. The partly oxidised sulphidic mine wastes contain abundant sulphides (arsenopyrite, sphalerite, galena) and oxidation products (scorodite, anglesite, smectite, Fe-oxyhydroxides), and possess extreme As and Pb (wt% levels) and elevated Ag, Cd, Cu, Sb and Zn values. Contemporary sulphide oxidation, hardpan formation, crystallisation of mineral efflorescences and acid mine drainage generation occur within the waste repositories. Acid seepages (pH 1.9–6.0) from waste dumps, tailings dams and mine workings display extreme As, Pb and Zn and elevated Cd, Cu and Sb contents. Drainage from the area is by the strongly contaminated Webbs Consols Creek and although this stream joins and is diluted by the much larger Severn River, contamination of water and stream sediments in the latter is evident for 1–5 km, and 12 km respectively, downstream of the mine site. The pronounced contamination of local and regional soils and sediments, despite the relatively small scale of the former operation, is due to the high metal tenor of abandoned waste material and the scarcity of neutralising minerals. Any rehabilitation plan of the site should include the relocation of waste materials to higher ground and capping, with only partial neutralisation of the waste to pH 4–5 in order to limit potential dissolution of scorodite and mobilisation of As into seepages and stream waters.  相似文献   

20.
The abundances and migration characteristics of the main ore and accompanying metals (Cu, Pb, Zn, Cd, Fe, and Hg) were investigated in the natural and technogenic landscapes of the North-Western Altai. Elevated metal concentrations (compared with the background and guideline values) were observed in the material of tailings of the Altai Mining and Processing Complex and Zmeinogorsk Gold Recovery Plant, as well as in the waters of anthropogenic lakes, snow cover, and vegetation. It was found that Zn and Cd are more actively transported into solutions than Pb and Cu during the oxidation dissolution of sulfides in waste heaps. The spatial migration of heavy metals was evaluated. Species-dependent features were determined in the accumulation of elements by plants in the phytocoenoses of anthropogenic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号