首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review our current knowledge of the disk-jet coupling in neutron star X-ray binaries. We compare neutron star and black hole X-ray binaries, by means of radio and X-ray observations, in order to understand the role played in the production of the jet, by characteristics proper of the accreting compact object involved: the existence of a solid surface, the presence of an ergosphere/event horizon, the strength of the magnetic field, the spin of the compact object.  相似文献   

2.
We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival XMM–Newton data approximately six year before the burst and in more recent XMM–Newton data obtained at the end of 2006 September (nearly four months after the burst). Since the source is very likely not a gamma-ray burst, we rename the source Swift J1749.4−2807, based on the Swift /BAT discovery coordinates. Using the BAT data of the type I X-ray burst, we determined that the source is at most at a distance of  6.7 ± 1.3 kpc  . For a transiently accreting X-ray binary, its soft X-ray behaviour is atypical: its 2–10 keV X-ray luminosity (as measured using the Swift /XRT data) decreased by nearly three orders of magnitude in about 1 day, much faster than what is usually seen for X-ray transients. If the earlier phases of the outburst also evolved this rapidly, then many similar systems might remain undiscovered because the X-rays are difficult to detect and the type I X-ray bursts might be missed by all the sky surveying instruments. This source might be part of a class of very fast transient low-mass X-ray binary systems of which there may be a significant population in our Galaxy.  相似文献   

3.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

4.
中子星X射线双星中kHz QPO现象的理论解释   总被引:1,自引:0,他引:1  
罗西X射线时变探测器(RXTE)在中子星小质量X射线双星中发现了千赫兹准周期振荡现象(kHzQPO)。kHzQPO的频率一般在几百到上千赫兹,其动力学时标与吸积盘最内部区域物质的运动时标一致,因此普遍认为kHz QPO产生于中子星表面附近区域,携带了来自中心中子星及周围强引力场信息,如质量、自转周期、角动量、半径、磁场等。kHz QpO现象的理解为研究强引力场和致密物质状态开启了一扇新的窗口。着重介绍基于kHz QPO的基本现象和相应的理论模型。  相似文献   

5.
A low mass X-ray binary(LMXB) contains either a neutron star or a black hole accreting materials from its low mass companion star. It is one of the primary astrophysical sources for studying stellar-mass compact objects and accreting phenomena. As with other binary systems, the most important parameter of an LMXB is the orbital period, which allows us to learn about the nature of the binary system and constrain the properties of the system's components, including the compact object. As a result, measuring the orbital periods of LMXBs is essential for investigating these systems even though fewer than half of them have known orbital periods. This article introduces the different methods for measuring the orbital periods in the X-ray band and reviews their application to various types of LMXBs, such as eclipsing and dipping sources, as well as pulsar LMXBs.  相似文献   

6.
One ultraluminous X-ray source in M82 has recently been identified as an accreting neutron star(named Nu STAR J095551+6940.8).It has a super-Eddington luminosity and is spinning up.An aged magnetar is more likely to be a low magnetic field magnetar.An accreting low magnetic field magnetar may explain both the superEddington luminosity and the rotational behavior of this source.Considering the effect of beaming,the spin-up rate is understandable using the traditional form of accretion torque.The transient nature and spectral properties of M82 X-2 are discussed.The theoretical range of periods for accreting magnetars is provided.Three observational appearances of accreting magnetars are summarized.  相似文献   

7.
Spectra of the spreading layers on the neutron star surface are calculated on the basis of the Inogamov–Sunyaev model taking into account general relativity correction to the surface gravity and considering various chemical composition of the accreting matter. Local (at a given latitude) spectra are similar to the X-ray burst spectra and are described by a diluted blackbody. Total spreading layer spectra are integrated accounting for the light bending, gravitational redshift and the relativistic Doppler effect and aberration. They depend slightly on the inclination angle and on the luminosity. These spectra also can be fitted by a diluted blackbody with the colour temperature depending mainly on a neutron star compactness. Owing to the fact that the flux from the spreading layer is close to the critical Eddington, we can put constraints on a neutron star radius without the need to know precisely the emitting region area or the distance to the source. The boundary layer spectra observed in the luminous low-mass X-ray binaries, and described by a blackbody of colour temperature   T c= 2.4 ± 0.1 keV  , restrict the neutron star radii to   R = 14.8 ± 1.5 km  (for a  1.4-M  star and solar composition of the accreting matter), which corresponds to the hard equation of state.  相似文献   

8.
We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft 'seed photons' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disc. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPOs) observed in the X-ray outputs of many accreting neutron star and black hole systems. As a sample application of our model, we analyse a kilohertz QPO observed in the atoll source 4U 1608–52. We find that the QPO is driven predominantly by an oscillation in the electron density of the Comptonizing gas.  相似文献   

9.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

10.
A model for the Rapid X-ray Burster (MXB 1730-333) based on an accreting rotating magnetized neutron star in a binary system is proposed. The bursts are attributed to instabilities produced at an equilibrium surface above the poles of the neutron star, which is created by the infalling gas supported by a combination of radiation and relativistic gas pressures. The special feature of the proposed model is that, when accretion onto the poles is prevented by radiation pressure, relativistic gas streams out of the polar region.  相似文献   

11.
The infrared emission from some X-ray sources is attributed to proton—cyclotron masering process operating near the polar regions of an accreting neutron star in a binary system.  相似文献   

12.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

13.
I review the evidence for stellar mass black holes in the Galaxy. The unique properties of the soft X-ray transient (SXTs) have provided the first opportunity for detailed studies of the mass-losing star in low-mass X-ray binaries. The large mass functions of these systems imply that the compact object has a mass greater than the maximum mass of a neutron star, strengthening the case that they contain black holes. The results and techniques used are discussed. I also review the recent study of a comparison of the luminosities of black hole and neutron star systems which has yielded compelling evidence for the existence of event horizons.  相似文献   

14.
Be/X-ray binaries are systems formed by a massive Be star and a magnetized neutron star, usually in an eccentric orbit. The Be star has strong equatorial winds occasionally forming a circumstellar disk. When the neutron star intersects the disk the accretion rate dramatically increases and a transient accretion disk can be formed around the compact object. This disk can last longer than a single orbit in the case of major outbursts. If the disk rotates faster than the neutron star, the Cheng-Ruderman mechanism can produce a current of relativistic protons that would impact onto the disk surface, producing gamma-rays from neutral pion decays and initiating electromagnetic cascades inside the disk. In this paper we present calculations of the evolution of the disk parameters during both major and minor X-ray events, and we discuss the generation of gamma-ray emission at different energies within a variety of models that include both screened and unscreened disks.  相似文献   

15.
We study the pycnonuclear burning of 34Ne in the inner crust of an accreting neutron star. We show that the associated energy production rate can be calculated analytically for any arbitrary temporal variability of the mass accretion rate. We argue that the theoretical time-scale for 34Ne burning is currently very uncertain and ranges from a fraction of a millisecond to a few years. The fastest allowable burning may change the composition of the accreted crust while the slowest burning leads to a time-independent nuclear energy generation rate for a variable accretion. The results are important for constructing self-consistent models of the accreted crust and deep crustal heating in neutron stars which enter soft X-ray transients.  相似文献   

16.
Accretion of interstellar material by an isolated neutron star is discussed. The point I address here is the interaction between the accretion flow and the stellar magnetosphere. I show that the interchange instabilities of the magnetospheric boundary under the conditions of interest are basically suppressed. The entry of the material into the magnetosphere is governed by diffusion. Due to this reason the persistent accretion luminosity of isolated neutron stars is limited to <4×1026 erg s−1. These objects can also appear as X-ray bursters with the burst durations of ∼30 min and repetition time of ∼105 yr. This indicates that the number of the accreting isolated neutron stars which could be observed with recent and modern X-ray missions is a few orders of magnitude smaller than that previously estimated.   相似文献   

17.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

18.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

19.
The origin and stability of a thin sheet of plasma in the magnetosphere of an accreting neutron star are investigated. First, the radial extension of such a magnetospheric disc is explored. Then a mechanism for magnetospheric accretion is proposed, reconsidering the bending wave explored by Agapitou, Papaloizou & Terquem, that was found to be stable in ideal magnetohydrodynamics. We show that this warping becomes unstable and can reach high amplitudes, in a variant of Pringle's radiation-driven model for the warping of active galactic nucleus accretion discs. Finally, we discuss how this mechanism might give a clue to explain the observed X-ray kilohertz quasi-periodic oscillation of neutron star binaries.  相似文献   

20.
The structure of the stellar atmosphere irradiated by an X-ray source is calculated. On the basis of these numerical calculations an approximate theory of the X-ray reprocessing is formulated. The interaction of X-rays with the stellar atmosphere induces a considerable stellar wind. However, the main part of the X-ray energy is reemitted.The optical appearances of the close binary system including an X-ray source are discussed. The light curve of such a system is obtained. The mass-loss rate of a star with the size close to that of its Roche lobe is evaluated in the isothermal approximation. Most likely, the accretion of matter on to a neutron star, or a black hole, is the cause of the X-ray luminosity. The accreting matter is supplied with the mass outflow from the normal component induced by X-rays. The X-ray luminosity is shown to have an upper limit stipulated by the outflow saturation.The model of HZ Her=Her X1 system is constructed which accounts for the observed light curve. The optical appearances of the system are due to the X-ray heating of the face of the X-ray source area of the normal star. The radiation of this hot area is partly reflected by the surface of the disc around the X-ray source. The thin disc is formed by the accretion of matter by the X-ray source. The effective reflection of hard X-rays (hv15–30 keV) by the stellar surface is considered. This phenomenon makes it possible to detect those X-ray pulsars whose beam does not intercept the Earth.The model of Sco X1 as a black hole in a close binary system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号