首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

2.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

3.
Observations of the Galactic Centre show evidence of one or two disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. A number of analyses have been carried out to investigate the dynamical behaviour and consequences of these discs, including disc thickness and eccentricity growth as well as mutual interaction and warping. However, most of these studies have neglected the influence of the stellar cusp surrounding the black hole, which is believed to be one to two orders of magnitude more massive than the disc(s).
By means of N -body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars.
Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF.  相似文献   

4.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   

5.
As stars close to the galactic centre have short orbital periods it has been possible to trace large fractions of their orbits in the recent years. Previously the data of the orbit of the star S2 have been fitted with Keplerian orbits corresponding to a massive black hole (MBH) with a mass of MBH = 3–4 × 106M implying an insignificant cusp mass. However, it has also been shown that the central black hole resides in a ∼1″ diameter stellar cluster of a priori unknown mass. In a spherical potential which is neither Keplerian nor harmonic, orbits will precess resulting in inclined rosetta shaped trajectories on the sky. In this case, the assumption of non‐Keplerian orbits is a more physical approach. It is also the only approach through which cusp mass information can be obtained via stellar dynamics of the cusp members. This paper presents the first exemplary modelling efforts in this direction. Using positional and radial data of star S2, we find that there could exist an unobserved extended mass component of several 105M forming a so‐called ‘cusp’ centered on the black hole position. Considering only the fraction of the cusp mass Mequation/tex2gif-inf-4.gif within the apo‐center of the S2 orbit we find as an upper limit that Mequation/tex2gif-inf-6.gif/(MBH + Mequation/tex2gif-inf-9.gif) ≤ 0.05. A large extended cusp mass, if present, is unlikely to be composed of sub‐solar mass constituents, but could be explained rather well by a cluster of high M/L stellar remnants, which we find to form a stable configuration. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper, we revisit the arguments for the basis of the time evolution of the flares expected to arise when a star is disrupted by a supermassive black hole. We present a simple analytic model relating the light curve to the internal density structure of the star. We thus show that the standard light curve proportional to   t −5/3  only holds at late times. Close to the peak luminosity the light curve is shallower, deviating more strongly from   t −5/3  for more centrally concentrated (e.g. solar type) stars. We test our model numerically by simulating the tidal disruption of several stellar models, described by simple polytropic spheres with index γ. The simulations agree with the analytical model given two considerations. First, the stars are somewhat inflated on reaching pericentre because of the effective reduction of gravity in the tidal field of the black hole. This is well described by a homologous expansion by a factor which becomes smaller as the polytropic index becomes larger. Secondly, for large polytropic indices wings appear in the tails of the energy distribution, indicating that some material is pushed further away from parabolic orbits by shocks in the tidal tails. In all our simulations, the   t −5/3  light curve is achieved only at late stages. In particular, we predict that for solar-type stars, this happens only after the luminosity has dropped by at least 2 mag from the peak. We discuss our results in the light of recent observations of flares in otherwise quiescent galaxies and note the dependence of these results on further parameters, such as the star/hole mass ratio and the stellar orbit.  相似文献   

7.
In this paper, we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine-model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoke the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the non-radial oscillation modes of the star, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motions.  相似文献   

8.
The radial motion along null geodesics in static charged black hole space–times, in particular, the Reissner–Nordström and stringy charged black holes, are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space–times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space–time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner–Nordström black holes.  相似文献   

9.
Observations of the Galactic Centre show evidence of disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. While it is widely accepted that about half of the stars form a relatively flat disc rotating clockwise on the sky, there is a substantial ongoing debate on whether there is a second, counter-clockwise disc of stars.
By means of N -body simulations using our bhint code, we show that two highly inclined stellar discs with the observed properties cannot be recognized as two flat circular discs after 5 Myr of mutual interaction. Instead, our calculations predict a significant warping of the two discs, which we show to be apparent among the structures observed in the Galactic Centre. While the high eccentricities of the observed counter-clockwise orbits suggest an eccentric origin of this system, we show the eccentricity distribution in the inner part of the more massive clockwise disc to be perfectly consistent with an initially circular disc in which stellar eccentricities increase due to both non-resonant and resonant relaxation.
We conclude that the relevant question to ask is therefore not whether there are two discs of young stars, but whether there were two such discs to begin with.  相似文献   

10.
We re-investigate the old problem of the survival of the five globular clusters (GCs) orbiting the Fornax dwarf galaxy in both standard and modified Newtonian dynamics (MOND). For the first time in the history of the topic, we use accurate mass models for the Fornax dwarf, obtained through Jeans modelling of the recently published line-of-sight (LOS) velocity dispersion data, and we are also not resigned to circular orbits for the GCs. Previously conceived problems stem from fixing the starting distances of the globulars to be less than half the tidal radius. We relax this constraint since there is absolutely no evidence for it and show that the dark matter (DM) paradigm, with either cusped or cored DM profiles, has no trouble sustaining the orbits of the two least massive GCs for a Hubble time almost regardless of their initial distance from Fornax. The three most massive globulars can remain in orbit as long as their starting distances are marginally outside the tidal radius. The outlook for MOND is also not nearly as bleak as previously reported. Although dynamical friction (DF) inside the tidal radius is far stronger in MOND, outside DF is negligible due to the absence of stars. This allows highly radial orbits to survive, but more importantly circular orbits at distances more than 85 per cent of Fornax's tidal radius to survive indefinitely. The probability of the GCs being on circular orbits at this distance compared with their current projected distances is discussed and shown to be plausible. Finally, if we ignore the presence of the most massive globular (giving it a large LOS distance), we demonstrate that the remaining four globulars can survive within the tidal radius for the Hubble time with perfectly sensible orbits.  相似文献   

11.
I examine the effectiveness of Kozai oscillations in the centres of galaxies and in particular the Galactic Centre (GC) using standard techniques from celestial mechanics. In particular, I study the effects of a stellar bulge potential and general relativity on Kozai oscillations, which are induced by stellar discs. Löckmann et al. recently suggested that Kozai oscillations induced by the two young massive stellar discs in the GC drive the orbits of the young stars to large eccentricity  ( e ≈ 1)  . If some of these young eccentric stars are in binaries, they would be disrupted near pericentre, leaving one star in a tight orbit around the central supermassive black hole and producing the S-star population. I find that the spherical stellar bulge suppresses Kozai oscillations, when its enclosed mass inside a test body is of the order of the mass in the stellar disc(s). Since the stellar bulge in the GC is much larger than the stellar discs, Kozai oscillations due to the stellar discs are likely suppressed. Whether Kozai oscillations are induced from other non-spherical components to the potential (e.g. a flattened stellar bulge) is yet to be determined.  相似文献   

12.
We analyse 81 optical spectra of the composite-spectrum binary HD 216572, and show that the primary is a cool giant of type G8 III while the secondary is a double-lined binary consisting of two nearly identical B9 dwarfs in a 1.18-d orbit. The inner system undergoes partial eclipses, whose photometry we model to derive the physical parameters of both secondary stars. The outer system does not eclipse. We isolate the combined spectrum of the secondary by spectral subtraction, and from 48 separate radial-velocity measurements of both secondary components we obtain a triple-lined orbit solution from which we determine the individual masses of all three stars and the inclinations of both the inner and the outer orbits. The period of the outer system is 55 d, which is surprisingly short for a giant star, and our detection of small but non-negligible amounts of variable chromospheric emission in the Ca  ii K line is not unlike that detected in other systems with comparably short periods. The secondary components are in a circular orbit and are rotating at about  95 ± 10 km s−1  ; although their surface-to-surface separation is only  4 R  the stars are not noticeably distorted geometrically by such close proximity. All three stars appear to be in synchronous rotation in their respective orbits. We derive fairly accurate Hertzsprung–Russell diagram positions for all three stars and compare them to evolutionary tracks calculated for the respective stellar masses, but cannot reconcile the age of the cool giant with that of the B stars.  相似文献   

13.
Hypervelocity stars (HVSs) ejected by the massive black hole at the Galactic Centre have unique kinematic properties compared to other halo stars. Their trajectories will deviate from being exactly radial because of the asymmetry of the Milky Way potential produced by the flattened disc and the triaxial dark matter halo, causing a change of angular momentum that can be much larger than the initial small value at injection. We study the kinematics of HVSs and propose an estimator of dark halo triaxiality that is determined only by instantaneous position and velocity vectors of HVSs at large Galactocentric distances ( r ≳ 50 kpc). We show that, in the case of a substantially triaxial halo, the distribution of deflection angles (the angle between the stellar position and velocity vector) for HVSs on bound orbits is spread uniformly over the range 10°–180°. Future astrometric and deep wide-field surveys should measure the positions and velocities of a significant number of HVSs, and provide useful constraints on the shape of the Galactic dark matter halo.  相似文献   

14.
We use N -body simulations to study the tidal evolution of globular clusters (GCs) in dwarf spheroidal (dSph) galaxies. Our models adopt a cosmologically motivated scenario in which the dSph is approximated by a static Navarro, Frenk & White halo with a triaxial shape. We apply our models to five GCs spanning three orders of magnitude in stellar density and two in mass, chosen to represent the properties exhibited by the five GCs of the Fornax dSph. We show that only the object representing Fornax's least dense GC (F1) can be fully disrupted by Fornax's internal tidal field – the four denser clusters survive even if their orbits decay to the centre of Fornax. For a large set of orbits and projection angles, we examine the spatial and velocity distribution of stellar debris deposited during the complete disruption of an F1-like GC. Our simulations show that such debris appears as shells, isolated clumps and elongated overdensities at low surface brightness (≥26 mag arcsec−2), reminiscent of substructure observed in several Milky Way dSphs. Such features arise from the triaxiality of the galaxy potential and do not dissolve in time. The kinematics of the debris depends strongly on the progenitor's orbit. Debris associated with box and resonant orbits does not display stream motions and may appear 'colder'/'hotter' than the dSph's field population if the viewing angle is perpendicular/parallel to the progenitor's orbital plane. In contrast, debris associated with loop orbits shows a rotational velocity that may be detectable out to a few kpc from the galaxy centre. Chemical tagging that can distinguish GC debris from field stars may reveal whether the merger of GCs contributed to the formation of multiple stellar components observed in dSphs.  相似文献   

15.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

16.
We consider the problem of tidal disruption of stars in the centre of a galaxy containing a supermassive binary black hole with unequal masses. We assume that over the separation distance between the black holes, the gravitational potential is dominated by the more massive primary black hole. Also, we assume that the number density of stars is concentric with the primary black hole and has a power-law cusp. We show that the bulk of stars with a small angular-momentum component normal to the black hole binary orbit can reach a small value of total angular momentum through secular evolution in the gravitational field of the binary, and hence they can be tidally disrupted by the larger black hole. This effect is analogous to the so-called Kozai effect well known in celestial mechanics. We develop an analytical theory for the secular evolution of the stellar orbits and calculate the rate of tidal disruption. We compare our analytical theory with a simple numerical model and find very good agreement.
Our results show that for a primary black hole mass of  ∼106–107 M  , the black hole mass-ratio   q > 10−2  , cusp size ∼1 pc, the tidal disruption rate can be as large as  ∼10−2–1 M yr−1  . This is at least 102–104 times larger than estimated for the case of a single supermassive black hole. The duration of the phase of enhanced tidal disruption is determined by the dynamical-friction time-scale, and it is rather short: ∼105 yr. The dependence of the tidal disruption rate on the mass ratio, and on the size of the cusp, is also discussed.  相似文献   

17.
In our previous paper (hereafter, paper I) we presented analytical results on the non-planar motion of a planet around a binary star for the cases of the circular orbits of the components of the binary. We found that the orbital plane of the planet (the plane containing the “unperturbed” elliptical orbit of the planet), in addition to precessing about the angular momentum of the binary, undergoes simultaneously the precession within the orbital plane. We demonstrated that the analytically calculated frequency of this additional precession is not the same as the frequency of the precession of the orbital plane about the angular momentum of the binary, though the frequencies of both precessions are of the same order of magnitude. In the present paper we extend the analytical results from paper I by relaxing the assumption that the binary is circular – by allowing for a relatively small eccentricity ε of the stars orbits in the binary. We obtain an additional, ε-dependent term in the effective potential for the motion of the planet. By analytical calculations we demonstrate that in the particular case of the planar geometry (where the planetary orbit is in the plane of the stars orbits), it leads to an additional contribution to the frequency of the precession of the planetary orbit. We show that this additional, ε-dependent contribution to the precession frequency of the planetary orbit can reach the same order of magnitude as the primary, ε-independent contribution to the precession frequency. Besides, we also obtain analytical results for another type of the non-planar configuration corresponding to the linear oscillatory motion of the planet along the axis of the symmetry of the circular orbits of the stars. We show that as the absolute value of the energy increases, the period of the oscillations decreases.  相似文献   

18.
Using the technique of determining the sum of the masses of double stars, we have estimated the mass of the central object in the globular cluster M15. The radial velocities of stars at distances up to 1″ from the cluster center have been used. The parameters of circular orbits and the space velocities of 11 selected field stars relative to the cluster center have been determined from the calculated velocity dispersions with respect to the mean radial velocity. Based on the mean space velocity V, 14 km s?1, and using the energy integral, we have estimated the mass of the central object to be within the range (1?9) × 103 M . We have estimated the kinetic power of the outflow of matter from the region surrounding the black hole in M15 and the specific angular momentum of the black hole.  相似文献   

19.
We investigate the morphological relation between the orbits of the central family of periodic orbits ( x 1 family) and the bar itself using models of test particles moving in a barred potential. We show that different bar morphologies may have as a backbone the same set of x 1 periodic orbits. We point out that by populating initially axisymmetric stellar discs exponentially with test particles in circular, or almost circular motion, we may end up with a response bar which reveals a shape different in crucial details from that of the individual stable x 1 orbits. For example, a bar model in which the x 1 orbits are pure ellipses may have a much more complicated response morphology. This depends on the particular invariant curves around x 1, which are populated in each model.  相似文献   

20.
The radius and virial mass of the old open cluster M67 are presented. The internal motion and mass segregation of the cluster are also discussed on the basis of accurate stellar proper motions obtained combining three independent proper motion catalogues of the cluster. Increases of the mean proper motion and the intrinsic dispersion of member stars with radial distance from the cluster center might suggest that the stars are escaping from the cluster. The stars in both inner and outer regions appear to be in isotropic orbits. At last, it is found that both space and velocity mass segregations exist for the old open cluster due to the dynamical evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号