首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is developed by taking into account the simultaneous mechanisms of true flotation and entrainment in a conventional flotation cell. The total volume of the cell is divided into three compartments: pulp collection zone, pulp quiescent zone and froth region, with the mechanisms being modeled as occurring at the same time but originating at different places: true flotation from the collection zone and entrainment from the quiescent one. A particle is referred to as suspended in water or attached to an air bubble, depending upon its original state before crossing the pulp–froth interface (whether or not it remains in that state all the way to the concentrate launder). The model is obtained by solving a set of equations describing the mass conservation of solids and water between adjacent compartments. The principal mass transfer factors are identified as: the flotation rate constant, the mean residence time in the collection zone, the froth recovery of attached particles, the degree of entrainment through the froth and the water recovery from the feed to the concentrate. The development presented here allows the intricate nature of the mass transfer in a flotation cell to be reduced to one single equation, overcoming the need of numerical methods for simulation purposes. Moreover, it is shown that reliable prediction of grade and recovery can be obtained without detailed information on the pulp hydrodynamics or on any froth sub-process either than drainage, bubble bursting and bubble coalescence.  相似文献   

2.
A laboratory flotation column using Venturi aerators and a vacuum system to remove froth was used to investigate the contribution of gas flow, pulp flow, cell volume and froth retention time on the ink removal efficiency and on cellulose fibres and mineral fillers loss. The increase in the gas flow from 4 to 8 L/min gave a general rise of particle transport from the pulp slurry to the froth with an ensuing strong increase in ink removal, from 75% to 85%, and water and total loss, from 10% to 40% and 15% to 30%, respectively. Whereas, the increase of the cell volume from 14 to 24 L improved ink removal from 72% to 80% without considerably affecting flotation loss. The rise of the froth retention time in the flotation cell from 5 to 20 s before removal gave a general decrease in the flotation loss from 20% to 11% without a corresponding decrease in ink removal. This trend was interpreted as reflecting poor ink drainage through the froth. The increase of both pulp and froth retention time in the flotation cell appeared as the most favourable way to improve ink flotation selectivity. A mathematical model, describing particle removal during flotation in terms of true flotation, entrainment and drainage, was proposed and used to fit experimental data.  相似文献   

3.
The importance of the cleaning action of the froth has been recognised. In order to observe the effect of various mechanisms on the gradients of mineral concentration in the froth, experiments were performed in a flotation cell using a deep froth phase where transverse motion of the froth was reduced to a minimum. The variables chosen for study include gas rate, baffling of the froth and product removal rate. The mineral studied comprised a mixed Cu, Zn and Fe sulphide with a siliceous gangue. A model based on counter-current plug-flow assumptions is advanced to describe some of the effects observed. A number of these effects are simulated using this model, leading to a better understanding of some of the processes occurring in the froth.  相似文献   

4.
Beneficiation of phosphatic ores through flotation is the general rule for apatitic endogenic ores (Kola, Phalaborwa, Brazil). It also constitutes the most widely used concentration process of sedimentary deposits with a siliceous gangue (Florida, Senegal). On the other hand, sedimentary deposits with a carbonate-bonded phase are not yet subject to industrial exploitation and the various flotation methods are still at the laboratory or pilot experimental stage. Abundant research is being carried out today and one or several methods should be sooner or later applied on a large scale.In the present day, plants make use of direct flotation (generally a fatty acid collector) sometimes followed by reverse flotation of siliceous fines carried away in the froth formed at the first stage. A careful removal of the clays is the rule.The beneficiation of sedimentary ores with carbonate gangue, on the contrary, will be done through reverse flotation of penalising elements.  相似文献   

5.
The flotation rate of galena was investigated as a function of air flow rate (AFR) and froth thickness (from 0 to 6 cm) in a batch flotation cell designed to produce a quiescent froth-liquid interface. This cell design limits mechanical breakage of the froth and prevents the hydraulic entrainment of fine particles into the froth phase. The overall transfer rate was characterized by a first-order rate constant, the overall rate constant (ORC). The ORC was found to increase with increasing AFR and with decreasing froth thickness. The transfer rate of material from the slurry to the froth was also determined as a function of AFR, and characterizes by its first-order rate constant, the flotation rate constant (FRC).The froth transport constant (FTC), the first-order constant which characterizes the transport of galena from the froth over the cell lip, was then determined from the ORC and the FRC. The FTC was found to increase with increasing AFR and decreasing froth thickness. For a froth thickness of 5 cm and low-to-intermediate AFR, the FTC was found to be significantly lower than the FRC.The FTC of galena particles of 0–12, 12–32 and 22–40 μm was also determined. At a froth thickness of 5 cm, the FTC decreased with increasing particle size over the full experimental range of AFRs.  相似文献   

6.
The need to obtain accurate, operator-independent data from small-scale laboratory flotation tests has become particularly apparent in the treatment of fine coal. The work described suggests a method for reducing operator dependency by removing the flotation froth uniformly. This is achieved using a perspex insert to change the geometry of the cell, by maintaining a constant pulp level height and by removing froth from the full width of the cell and at a fixed depth.A comparison is made between the modified cell and a conventional Denver cell by obtaining equilibrium and kinetic data for each cell from two independent operators.The comparison shows a reduction in the variability of the results obtained from the modified cell.  相似文献   

7.
The limitations of pulp chemistry measurements in the flotation of a platinum group mineral (PGM) bearing Merensky ore were demonstrated in Part 1 of this article. In this paper the importance of the contribution of the froth structure due to changing froth stability is analysed using the batch flotation data. The effects of mild steel (MS) and stainless steel (SS) milling media and the addition of copper sulphate on the flotation performance of the sulphide minerals in Merensky ore have been evaluated in relation to the changes in stability of the froth phase. The effects of pulp chemistry and froth stability on the flotation of sulphide minerals were distinguished by using two different rate constants (kt and kw). The rate constant (kw) calculated as a function of cumulative water recovery was used to describe characteristics of froth phase and kt was calculated as a function of flotation time. The results revealed that the type of grinding media and copper sulphate addition had an interactive effect on the froth stability. While mild steel (MS) milling increased the froth stability due to the presence of hydrophilic iron hydroxides and colloidal metallic iron, the addition of copper sulphate reduced the stability, especially with stainless steel (SS) milling. Copper sulphate addition had a dual role in the flotation of Merensky ore in that it caused destabilisation of the froth zone as well as activation of selected sulphide minerals. The dominant effect was found to depend on the type of milling media and floatability of the mineral in question and this work has demonstrated the importance of using a combination of measurements to evaluate flotation performance holistically.  相似文献   

8.
9.
The paper discusses the obstacles in the way of making mathematical models of flotation circuits for use in process design; and describes also a route towards simple, but practical, models of full-scale flotation plant performance, which overcome the major problems. The principal difficulties lie in simulating the froth processes at full-scale. Timed batch tests may be used to identify the pulp-froth transfer processes, and steady-state (“equilibrium”) cell tests may be used to identify static froth concentration profiles. Froth mobility in a real cell is different from that in an “equilibrium” cell, and this paper shows how these dynamic patterns have been investigated, and may be used to simulate full-scale circuits. It is shown that it is not possible, at the present time, to completely eliminate judgement and experience from the establishment of parameter values; but the position should improve as experience accumulates.  相似文献   

10.
Data are presented which illustrate a range of flotation behaviour observed for roughing and cleaning operations in industrial plants. Differences are observed in the size by size recoveries in cleaner flotation from those measured in the roughers.The implications of these differences to flotation modelling are discussed, and the importance of conducting confirmatory laboratory batch flotation tests is emphasized.Batch flotation tests have indicated that for certain minerals the flotation characteristics in the cleaner tests are substantially different from those in rougher tests conducted under the same conditions of pulp level, impeller speed, aeration rate and froth removal. The differences are most pronounced for the coarse particles.Computer simulations of a rougher-cleaner circuit have been done to illustrate the effects of these differences on predicted circuit performance. The differences are significant and arise mainly from differences in the behaviour of coarse particles.  相似文献   

11.
Optimisation of flotation parameters using rate models is not a new concept. The kinetic model based on time recovery data, which uses the extra dimension of rate, has been in vogue since time immemorial for scaling up of lab data. Often, interpretation on the performance of a flotation circuit, based only on R (the ultimate recovery) and ks (the first-order rate constant of the component) may lead to wrong conclusions. In such cases, a modified flotation rate constant kmod defined as the product of R and ks, i.e., kmod=Rks and selectivity index (SI), defined as the ratio of the modified rate constant of valuables to the modified rate constant of gangue, can be used. An attempt has been made in this paper to optimize the batch laboratory froth flotation parameters of fine coal using the above two concepts, i.e., kmod and SI and statistical techniques.A flotation bank containing four Outukumpu cells was optimized using the results obtained from the lab study. The airflow number and the froth number were used as a basis for scale up. To gauge the performance of the froth flotation circuit, an efficiency parameter called the coefficient of separation or the CS was used. The yield from the flotation circuit improved, the froth ash reduced and the rejects ash went up.  相似文献   

12.
Models in which the cell contents are partitioned into distinct pulp and froth phases are reviewed critically. The nature of the mixing within the phases is discussed. Multiphase models describing froth column concentration gradients and pulp residence time effects are mentioned. It is shown that at steady state multiphase models can be reduced to the two-phase case. Deficiencies in the models and topics requiring further development are outlined.  相似文献   

13.
A constrained model predictive control (MPC) strategy is proposed to deal with the problem of optimizing flotation column operation using secondary variables. Froth depth, collection zone gas hold-up and bias rate are selected as secondary variables to be controlled whereas tailing, wash-water and gas flow rate are used as manipulated variables. The control problem was formulated in order to minimize the tracking error of the gas hold-up and bias rate by maintaining gas flow rate, wash-water flow rate and bias rate within their operational limits. In particular, a strategy was conceived to optimize the column flotation process based on establishing an unreachable high set point for the gas hold-up (which is equivalent to maximizing the bubble surface area available for particle collection at a given flotation reagent dosage and thus recovery), while simultaneously satisfying operational constraints (such as ensuring a positive bias rate to prevent gangue entrainment and therefore concentrate grade deterioration). Several other operational constraints on wash-water, gas rate, gas hold-up and bias rate were considered, their use being justified from a processing point of view. Since this study deals with the hydrodynamic characteristics of flotation columns, a pilot flotation column working with a two-phase system is sufficient to demonstrate the advantages of using predictive control for this process optimization.  相似文献   

14.
Accurately estimating entrainment is crucial when predicting flotation performance as it is essential for determining the concentrate grade achieved. It has been found previously that the amount of gangue entrained is proportional to the water recovery; this proportionality is referred to as the entrainment factor. Experimentally it has been found that entrainment is a strong function of particle size, as well as being dependent on other cell operating parameters such as froth depth and air rate.A simplified theoretical model for entrainment is developed which includes the effects of liquid motion and content, particle settling and particle dispersion. First, a detailed one-dimensional differential model for the entrainment factor is developed and solved numerically. Thereafter, a simplified analytical expression for the entrainment factor is produced which is a good approximation to the more detailed one-dimensional model. Both these models are shown to predict closely experimental trends for entrainment as a function of particle size and froth depth.  相似文献   

15.
It is well known that the chemical environment determines the success of the flotation process, however its characterisation and control is difficult to achieve. This paper, as two parts, Part I and Part II, evaluates the use of various measurements and their interpretation to gain an understanding of the influence of varying parameters such as the type of milling media and copper sulphate addition on the flotation performance of sulphide minerals from a platinum group mineral (PGM) bearing Merensky ore. It shows the complexity of interpretation and the importance of analysing flotation performance holistically. Part I focuses on the pulp chemistry and mineral potential measurements have been used to show the differences in the response of the various mineral electrodes to different conditions. The final flotation recoveries of the sulphide minerals in the ore followed the same trend as the decrease in mineral potential due to collector addition viz. chalcopyrite > pentlandite > pyrrhotite. Type of milling media and copper sulphate addition slightly affected the mineral electrode potential and flotation recovery of chalcopyrite. Addition of copper sulphate increased the recovery of pentlandite and particularly pyrrhotite due to activation by copper (II) ions. The copper activation mechanism was likely to be in the form of initial adsorption of copper hydroxide followed by reduction to Cu+ at the surface. However, the changes in flotation performance of the different minerals in the ore could not be completely described by the electrochemical changes, demonstrating the limitations of these measurements. Part II addresses the effect of froth stability as demonstrated by the variations in the mass and water recovery data resulting from the different milling conditions and addition of copper sulphate which emphasised the importance of considering the froth phase in the evaluation of flotation data.  相似文献   

16.
Semi-batch flotation tests were performed using different narrow size fractions of three different xanthate-conditioned sulphides floated singly and together in all possible combinations. To ensure proper selective flotation conditions a gangue mineral was included in all tests. Within the reproducibility of the experimentation no significant interaction among the mineral species is indicated, a result which has useful implications in distributed rate coefficient models of flotation kinetics.The conditions under which the present findings may be valid in industrial flotation are discussed, and suggestions are made for further work.  相似文献   

17.
Selective fine particle separation is a key unit operation in the mineral and related industries. In flotation, the capture of fine particles by bubbles is inefficient due to their low mass and momentum, which result in low particle–bubble collision efficiency. We demonstrate that it is possible to selectively separate a mixture of very fine hydrophobic graphite and hydrophilic quartz particles by direct contact with an air–water interface without a particle–bubble collision step involved. We demonstrate that it is possible to scale-up the process from a simple batch to a continuous process. Good selective separation of graphite from quartz gangue could be obtained under continuous conditions.  相似文献   

18.
Laboratory batch flotation tests were carried out on a deslimed (+6 μm) sulfiderich cassiterite ore, an ultrafine fraction (?6 μm) of a cassiterite ore and a bituminous coal. Chemical conditions were kept constant but the water recovery was varied by changing the height of the froth column and the rate and depth of froth removed. The recovery of the floatable mineral in each system was then found to be linearly related to the weight of water recovered. The intercept of the regression line on the mineral recovery axis, where the water recovery is zero, was interpreted as the recovery due to true flotation. The entrainment contribution was proportional to the slope of the line. In this way the contributions of entrainment and true flotation to overall recovery were separated.  相似文献   

19.
Arsenic is one of the most dangerous inorganic pollutants and thus a penalty element in many base metal concentrates. Arsenic removal in sulphide flotation has been studied extensively with various approaches, including pre-oxidation of flotation pulp, Eh control during flotation and the use of selective depressants/collectors. Pre-oxidation of flotation pulp using oxidizing agents or aeration conditioning represents a simple approach in arsenic removal and was found effective in many cases. Selective flotation of arsenic minerals through Eh control has made significant advances in recent years with promising results achieved. In addition, various depressants and collectors have also been studied in arsenic removal. In this communication, the various approaches used in selective flotation of arsenic minerals are reviewed with emphasis on the development in recent years.  相似文献   

20.
Bubble size distributions and flotation rates were determined as a function of air flow rate and frother concentration using a specially designed batch flotation cell. This cell permitted the unambiguous determination of the flotation rate from the slurry to the froth.Flotation rate constants were determined for different size classes of silica and galena. The flotation rate constants increased to a maximum and then decreased as air flow rate was increased. This maximum was predicted by a model which considered the effect of bubble size on both the total bubble surface area and the bubble-particle collision efficiency. This work shows that collision efficiency effects, shown to exist in single-bubble/single-particle systems, are also present in flotation systems where many bubbles and particles interact.A second model for hindered flotation is proposed which assumes that the particle-capturing bubble surface differs from the particle-retaining surface. This model predicts a sharp transition from hindered to free flotation. Experimental results are presented which agree well with those derived from the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号