首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploring the potentials of new methods in palaeothermometry is essential to improve our understanding of past climate change. Here, we present a refinement of the published δ44/40Ca-temperature calibration investigating modern specimens of planktonic foraminifera Globigerinoides sacculifer and apply this to sea surface temperature (SST) reconstructions over the last two glacial-interglacial cycles. Reproduced measurements of modern G. sacculifer collected from surface waters describe a linear relationship for the investigated temperature range (19.0-28.5 °C): δ44/40Ca [‰] = 0.22 (±0.05)∗SST [°C] −4.88. Thus a change of δ44/40Ca[‰] of 0.22 (±0.05) corresponds to a relative change of 1 °C. The refined δ44/40Camodern-calibration allows the determination of both relative temperature changes and absolute temperatures in the past. This δ44/40Camodern-calibration for G. sacculifer has been applied to the tropical East Atlantic sediment core GeoB1112 for which other SST proxy data are available. Comparison of the different data sets gives no indication for significant secondary overprinting of the δ44/40Ca signal. Long-term trends in reconstructed SST correlate strongly with temperature records derived from oxygen isotopes and Mg/Ca ratios supporting the methods validity. The observed change of SST of approximately 3 °C at the Holocene-last glacial maximum transition reveals additional evidence for the important role of the tropical Atlantic in triggering global climate change, based on a new independent palaeothermometer.  相似文献   

2.
We have used correlative analysis between mean December-January-February winter wind velocities, measured at the Xisha Meteorological Observatory (16°50′N, 112°20′E) in the middle of the South China Sea, and mean δ18O data for the corresponding month from Porites lutea coral, collected in Longwan waters (19°20′N, 110°39′E), to obtain a linear equation relating the two datasets. This winter wind velocity for the South China Sea (WMIIscs) can then be correlated to the coral δ18O by the equation WMIIscs = −1.213-1.351 δ18O (‰ PDB), r = −0.60, n = 40, P = 0.01. From this, the calculated WMIIscs-δ18O series from 1944 to 1997 tends to decrease during the 1940s to the 1960s; it increases slightly during the 1970s and then decreases again in the 1980s and 1990s. The calculated decadal mean WMIIscs-δ18O series had a obvious decrease from 5.92 to 4.63 m/s during the period of 1944-1997. The calculated yearly mean WMIIscs-δ18O value is 5.58 m/s from 1944 to 1976 and this decreases to 4.85 m/s from 1977 to 1998. That is the opposite trend to the observed yearly mean SST variation. The yearly mean SST anomaly is −0.27° from 1943 to 1976 and this increases to +0.16° from 1977 to 1998. Spectral analysis used on a 54-year-long calculated WMIIscs-δ18O series produces spectral peaks at 2.4-7 yr, which can be closely correlated with the quasibiennial oscillation band (QBO band, 2-2.4 yr) and the El Ñino southern oscillation band (ENSO band, 3-8 yr). Hence most of the variability of the winter monsoon intensity in the middle of the South China Sea is mainly constrained by changes in the thermal difference between the land and the adjoining sea area, perhaps due to global warming.  相似文献   

3.
Reactive phosphorus undergoes diagenetic transformation once transferred into marine sediments. The degree of regeneration and redistribution of phosphorus depends on early diagenetic and environmental conditions, which may be linked to larger scale phenomena, such as bottom water circulation, water column ventilation, and organic carbon flux. Phosphorus phases of the <50-μm-sized fraction of deep-sea sediments from core SU 90-09 (North Atlantic, 43°31′N, 30°24′W, 3375 m below sea level) have been analyzed using a sequential extraction technique (SEDEX method) to reconstruct phosphorus geochemistry during Heinrich events 4 and 5. Comparison with Holocene samples from the same site indicates that postdeposition diagenetic transformation has not affected phosphorus distribution in the deep part of the sediments. Total and reactive phosphorus average 0.40 ± 0.04 mg/g and 0.30 ± 0.05 mg/g, respectively, and are comparable to values found in analog deep-sea environments in the North Atlantic. Detrital phosphorus, the phase linked to igneous- and metamorphic-derived material, sharply increases during Heinrich events and covaries with the ice-rafted debris record, whereas authigenic and Fe-bound phosphorus phases, both influenced by redox conditions, decrease or even disappear. These findings suggest that during the deposition of Heinrich layers (HLs), environmental parameters hampered the precipitation of these phases. Large freshwater discharges in relation to iceberg surges may have provoked a temporary stratification of the water column. Accordingly, dysaerobic conditions in the sediments may have fostered the loss of dissolved phosphorus from the sediments to the water column, in a direct and rapid response to the changed conditions. Decreasing trends in organic matter elemental ratios (total organic carbon/organic phosphorus) and Rock-Eval oxygen index values, along with the presence of partly authigenic dolomite and ankerite within HLs, also support this assumption.  相似文献   

4.
Pollen, foraminifer, dinocyst, and coarse lithic high-resolution analyses and δ18O measurements have been carried out for the last-glacial section of marine core MD95-2042 located near the southwestern margin of the Iberian Peninsula. The pollen data indicate a high frequency of vegetational changes on the adjacent continent during this period, suggesting a climatic variability very similar to that of the Dansgaard-Oeschger cycles recorded by the Greenland ice cores. The detailed direct correlation of the terrestrial and marine proxy data from core MD95-2042 indicates a three-phase pattern of Heinrich events in land and ocean environments. The first and last phases of the H5 and H4 events are characterized by a mild and humid climate in southwestern Europe, probably associated with the European origin of the ice-rafted detritus. The middle phase exhibits a cold and dry climate in Iberia linked with the maximum input of ice-rafted detritus. This phase seems to correspond with the Laurentide ice-sheet surges. Between the Heinrich events, several cold and dry periods on land are correlated with stades of the Dansgaard-Oeschger cycles. The impact of the Dansgaard-Oeschger stades in southwestern Europe seems to be preferentially connected to the cold winter air masses reaching this mid-latitude region.  相似文献   

5.
Climate change on the Yucatan Peninsula during the Little Ice Age   总被引:1,自引:0,他引:1  
We studied a 5.1-m sediment core from Aguada X'caamal (20° 36.6′N, 89° 42.9′W), a small sinkhole lake in northwest Yucatan, Mexico. Between 1400 and 1500 A.D., oxygen isotope ratios of ostracod and gastropod carbonate increased by an average of 2.2‰ and the benthic foraminifer Ammonia beccarii parkinsoniana appeared in the sediment profile, indicating a hydrologic change that included increased lake water salinity. Pollen from a core in nearby Cenote San José Chulchacá showed a decrease in mesic forest taxa during the same period. Oxygen isotopes of shell carbonate in sediment cores from Lakes Chichancanab (19° 53.0′N, 88° 46.0′W) and Salpeten (16° 58.6′N, 89° 40.5′W) to the south also increased in the mid-15th century, but less so than in Aguada X'caamal. Climate change in the 15th century is also supported by historical accounts of cold and famine described in Maya and Aztec chronicles. We conclude that climate became drier on the Yucatan Peninsula in the 15th century A.D. near the onset of the Little Ice Age (LIA). Comparison of results from the Yucatan Peninsula with other circum-Caribbean paleoclimate records indicates a coherent climate response for this region at the beginning of the LIA. At that time, sea surface temperatures cooled and aridity in the circum-Caribbean region increased.  相似文献   

6.
We investigated the characteristics of the alkenones produced by a bloom of Emiliania huxleyi in the eastern Bering Sea in 2000. Alkenones were detected in surface waters between 57°N and 63°N, where phosphate concentrations were low and the ammonium/nitrate ratio was high. The total alkenone content (C37:2, C37:3, and C37:4) ranged from 22.0 to 349 μg g−1 in suspended particles and from 0.109 to 1.42 μg g−1 in surface sediments. This suggests that a large proportion of the particulate alkenones synthesized in the surface water rapidly degraded within the water column and/or at the water-sediment interface of the Bering Shelf. The change in the stable carbon isotopic composition (δ13C) of C37:3 alkenone could not be explained only by variation in [CO2(aq)] in the surface water but also depended on the growth rate of E. huxleyi. The alkenone unsaturation index (UK′37) was converted into an alkenone “temperature” with three equations [Prahl et al 1988], [Sikes et al 1997] and [Müller et al 1998]; Sikes et al.’s (1997) equation gave the best correlation with the observed sea surface temperature (SST) in the eastern Bering Sea. However, some temperatures estimated by Sikes et al.’s (1997) equation from the UK′37 varied from the observed SST, possibly because of the rapidly changing rate of alkenone synthesis in the logarithmic growth stage or the low rate of alkenone synthesis when nutrients were limiting. Temperatures estimated from UK′37 in the surface sediments (6.8-8.2°C) matched the observed SST in September (7-8°C) but differed from the annual average SST of 4 to 5°C, suggesting that most of the alkenone in the eastern Bering Sea was synthesized during limited periods, for instance, in September. The relative amounts of C37:4 alkenone as proportions of the total alkenones (referred to as C37:4%) were high, ranging from 18.3 to 41.4%. Low-salinity water (<32 psu) within the study area would have contributed to the high C37:4% because a negative linear relationship between C37:4% and salinity was found in this study.  相似文献   

7.
Palynological, sedimentological and stable isotopic analyses of carbonates and organic matter performed on the El Portalet sequence (1802 m a.s.l., 42°48′00?N, 0°23′52?W) reflect the paleoclimatic evolution and vegetation history in the central-western Spanish Pyrenees over the last 30,000 yr, and provide a high-resolution record for the late glacial period. Our results confirm previous observations that deglaciation occurred earlier in the Pyrenees than in northern European and Alpine sites and point to a glacial readvance from 22,500 to 18,000 cal yr BP, coinciding with the global last glacial maximum. The patterns shown by the new, high-resolution pollen data from this continental sequence, chronologically constrained by 13 AMS 14C dates, seem to correlate with the rapid climate changes recorded in Greenland ice cores during the last glacial-interglacial transition. Abrupt events observed in northern latitudes (Heinrich events 3 to 1, Oldest and Older Dryas stades, Intra-Allerød Cold Period, and 8200 cal yr BP event) were also identified for the first time in a lacustrine sequence from the central-western Pyrenees as cold and arid periods. The coherent response of the vegetation and the lake system to abrupt climate changes implies an efficient translation of climate variability from the North Atlantic to mid latitudes.  相似文献   

8.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

9.
The composition of ice‐rafted debris (IRD) within a sediment core from the European continental slope (core OMEX‐2K; 49° 5′ N, 13° 26′ W) has been examined using environmental magnetic analyses. The data demonstrate compositional variability of the IRD within Heinrich layers 2 (H2) and 1 (H1) and these differences are most readily explained by changes in the contribution of different IRD sources to the core site. Some IRD within the main Heinrich layers show magnetic signatures that are similar to IRD derived from the Laurentide ice sheet found in cores from within the main North Atlantic IRD‐belt. In contrast, other IRD‐rich layers, both prior to and within the main Heinrich layers, demonstrate different magnetic behaviour, suggesting a contribution from a non‐Laurentide sourced IRD, most likely derived from ice streams discharging from northeast Atlantic ice sheets such as the British and Fennoscandian ice sheets. These data are consistent with published compositional data from the same core and, given the rapid, highly sensitive and non‐destructive nature of the method, suggest that environmental magnetic analysis has considerable potential for characterising IRD materials within Heinrich layers for the purposes of defining provenance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
We present a multiproxy study of land use by a pre-Columbian earth mounds culture in the Bolivian Amazon. The Monumental Mounds Region (MMR) is an archaeological sub-region characterized by hundreds of pre-Columbian habitation mounds associated with a complex network of canals and causeways, and situated in the forest–savanna mosaic of the Llanos de Moxos. Pollen, phytolith, and charcoal analyses were performed on a sediment core from a large lake (14 km2), Laguna San José (14°56.97′S, 64°29.70′W). We found evidence of high levels of anthropogenic burning from AD 400 to AD 1280, corroborating dated occupation layers in two nearby excavated habitation mounds. The charcoal decline pre-dates the arrival of Europeans by at least 100 yr, and challenges the notion that the mounds culture declined because of European colonization. We show that the surrounding savanna soils were sufficiently fertile to support crops, and the presence of maize throughout the record shows that the area was continuously cultivated despite land-use change at the end of the earth mounds culture. We suggest that burning was largely confined to the savannas, rather than forests, and that pre-Columbian deforestation was localized to the vicinity of individual habitation mounds, whereas the inter-mound areas remained largely forested.  相似文献   

11.
Deep sea sediment cores taken between 50° and 75°N in the North Atlantic, in water depths varying between 1340 and 3850 m, were examined to provide an astronomically calibrated late Quaternary time-scale based on physical property records. Magnetic susceptibility and gamma ray attenuation porosity evaluator (GRAPE) density changes of these cores revealed significant responses to orbital forcing in the eccentricity (100 kyr), obliquity (41 kyr) and precessional (23, 19 kyr) bands. At 75°N (Greenland Sea), a response to obliquity forcing was weak despite the fact that it should become more pronounced in sediments at high latitudes. Application of bandpass filtering at the obliquity period (41 kyr), however, showed that variance at this period did exist in the magnetic susceptibility record, but at a very low power. At 50°N stacked curves of magnetic susceptibility correlated strongly with the SPECMAP curve for the past 500 ka. Since about 65 ka, dropstone layers are recorded in both magnetic susceptibility and GRAPE data of Rockall Plateau sediments. Although Rockall Plateau sediments show peaks in physical properties that correlate with Heinrich events (H1, H2, H4, H5, H6), such a relationship was not readily observed in Norwegian-Greenland Sea records. Heinrich events at Rockall Plateau sites indicate a northward flow of icebergs in the eastern North Atlantic. This flow pattern and the presence of Heinrich events during the past 65 ka raise the questions of whether similar events occurred before this time period, and to what kind of ice sheet dynamics and climatic-oceanographic conditions favoured major iceberg surges from the Laurentide ice sheet to the North Atlantic at 50°N.  相似文献   

12.
Bulk geochemical characterization (total organic carbon, grain size distribution, carbon isotope composition) and molecular biomarkers (lignin phenols, straight chain aliphatic hydrocarbons, glycerol dialkyl glycerol tetraethers) were analyzed for a 21 m core from the Bohai Sea (North China), spanning ca 21 ka BP. These paleo-proxies presented remarkable differences between the late glacial period and the Holocene, reflecting continental and coastal environments, respectively. Two peat layers were deposited during the period of ca 9000-8460 yr BP. Thereafter the core site has been consistently covered by seawater until recent reclamation of land from the sea. The occurrence of a total organic carbon maximum from ca 6000-3800 yr BP was attributed to delivery of organic carbon enriched sediments via the Yellow River, consistent with increased vegetation density and higher development of soil under warm and humid mid-Holocene climate conditions. The distributions of lignin phenol compositions and C31/C29n-alkane ratio suggested the largest expansion of woody plants between ca 5300 and 4000 yr BP, corresponding to the extremely favorable climatic conditions. Since ca 3800 yr BP, an abrupt increase in the C31/C29n-alkane ratio suggested higher abundance of grasses, consistent with a drying climate trend after the mid-Holocene. Since our coastal sediments close to the Yellow River outflow contain catchment-integrated environmental signals of the river basin, molecular proxies demonstrate that the variability of vegetation distributions in the Holocene is a widespread phenomenon in those areas adjacent to Yellow River Basin.  相似文献   

13.
The high precision measurement of the Sr/Ca ratio in corals has the potential for measuring past sea surface temperatures at very high accuracy. However, the veracity of the technique has been questioned on the basis that there is both a spatial and temporal variation in the Sr/Ca ratio of seawater, and that kinetic effects, such as the calcification rate, can affect the Sr/Ca ratio of corals, and produce inaccuracies of the order of 2-4 °C. In the present study, a number of cores of the massive hermatypic scleractinian coral Porites, from the central Great Barrier Reef, have been analyzed for Sr/Ca at weekly to monthly resolution. Results from a 24 year record from Myrmidon Reef show an overall variation from 22.7 °C to 30.4 °C. The record shows a warming/cooling trend with maximum warming centred on the 1986-1987 summer. While some bleaching was reported to have occurred at Myrmidon Reef in 1982, the Sr/Ca record indicates that subsequent summer temperatures were much higher. The 4.5 year record from Stanley Reef shows a maximum SST of 30 °C during the 1997-1998 El Niño event. The calibrations from Myrmidon and Stanley Reefs are in excellent agreement with previously published calibrations from nearby reefs. While corals do not calcify in equilibrium with seawater due to physiological control on the uptake of Sr and Ca into the lattice of coralline aragonite, it can be argued that, provided only a single genus such as Porites sp. is used, and that the coral is sampled along a major vertical growth axis, then the Sr/Ca ratio should vary uniformly with temperature. Similarly, objections based on the spatial and temporal variability of the Sr/Ca activity ratio of seawater can be countered on the basis that in most areas where coral reefs grow there is a uniformity in the Sr/Ca activity ratio, and there does not appear to be a change in this ratio over the growth period of the coral. Evidence from several corals in this study suggest that stress can be a major cause of the breakdown in the Sr/Ca-SST relationship. Thermal stress, resulting from either extremely warm or cool temperatures, can produce anomalously low Sr/Ca derived SSTs as a result of the breakdown of the biological control on Sr/Ca fractionation. It is considered that other stresses, such as increased nutrients and changes in light intensity, can also lead to a breakdown in the Sr/Ca-SST relationship. Two of the main issues affecting the reliability of the Sr/Ca method are the calibration of the Sr/Ca ratio with measured SST and the estimation of tropical last glacial maximum (LGM) palaeotemperatures. Instead of producing a constant calibration, just about every one published so far is different from the others. What is obvious is that for most calibrations while the slope of the calibration equation is similar, the intercepts are not. While the cause for this variation is still unknown, it would appear that corals from different localities around the world are responding to their own particular environment or that certain types of environments exert a control on the corals’ physiology. Sr/Ca derived SST estimates for the LGM and deglaciation of 5 °C-6 °C cooler than present are at odds with estimates of 2 °C-3 °C cooling by other climate proxies. The apparent lack of reef growth during the LGM suggests that SSTs were too cold in many parts of the tropics for reefs to develop. This would lend support to the idea that tropical SSTs were much cooler than what the CLIMAP data suggests.  相似文献   

14.
Dinoflagellate cyst assemblages from a well-exposed uppermost Cretaceous section at Zumaia (northern Spain) provide a basis for comparison with previous biostratigraphic and magnetostratigraphic studies on the problematic location of the Campanian-Maastrichtian boundary in the section. The position of the last occurrence of Corradinisphaeridium horridum and first common occurrence of Alterbidinium acutulum, correspond well with the bioevents defining the Campanian-Maastrichtian boundary in the Global boundary Stratotype Section and Point of Tercis les Bains (130 km to the North). Together with other age-diagnostic dinoflagellate cyst bioevents, we suggest that the boundary should be placed between 239.75 and 224.75 m below the Cretaceous-Palaeogene boundary, about 46 m lower than an interpretation based on the first occurrence of the planktonic foraminifer Pseudoguembelina palpebra and the last occurrence of the nannofossil Broinsonia parca subsp. constricta. A conspicuous acme of the dinoflagellate cyst Thalassiphora cf. delicata is encountered around the lower-upper Maastrichtian boundary (calibrated by foraminiferal, calcareous nannoplankton and magnetic polarity data), which may prove to be a useful correlatable event.  相似文献   

15.
Two piston cores, one located far from the continents (The North Pacific Ocean: ES core), and another located comparatively closer to the continents (The Bering Sea: BOW-8a core) were investigated to reconstruct environmental changes on source land areas. The results show significant contribution of terrestrial organic matter to sediments in both cores. The δ13C values of n-C27, n-C29, and n-C31 alkanes in sediments from the North Pacific ES core show significant glacial to interglacial variation whereas those from the Bering Sea core do not. Variations of δ13C values of land plant n-alkanes are related to the environmental or vegetational changes in the source land areas. Environmental changes, especially, aridity, rainfall, and pCO2 during glacial/interglacial transitional periods can affect vegetation, and therefore C3 / C4 plant ratios, resulting in δ13C changes in the preserved land plant biomarkers. Maximum values of δ13C as well as maximum average chain length values of long chain n-alkanes in the ES core occur mostly at the interglacial to glacial transition zones reflecting a time lag related to incorporation of living organic matter into soil and transportation into ocean basins via wind and/or ability of C4 plants to adapt for a longer period before being replaced by C3 plants when subjected to gradual climatic changes. Irregular variations with no clear glacial to interglacial trends in the BOW-8a core may result from complex mixture of aerosols from westerly winds and riverine organic matter from the Bering Sea catchments. In addition, terrestrial organic matter entering the Bering Sea could originate from multiple pathways including eolian, riverine, and ice rafted debris, and possibly be disturbed by turbidity and other local currents which can induce re-suspension and re-sedimentation causing an obliterated time relation in the Bering Sea biomarker records.  相似文献   

16.
《Chemical Geology》2002,182(2-4):583-603
New K/Ar ages based on 40Ar/39Ar incremental heating of <2- and 2–20-μm size fractions of the well-characterized, carbonate-bearing Heinrich layers of core V28-82 in the eastern North Atlantic are 846–1049 Ma, overlapping with conventional K/Ar ages from the same Heinrich layers on the Dreizack seamounts of 844–1074 Ma. This agreement suggests the equivalence of the methods in fine-grained terrigenous sediments. Additionally, Heinrich layer H2 yielded a 40Ar/39Ar-based K/Ar age of 970±4 from Orphan Knoll in the southern Labrador Sea, within the range found in eastern North Atlantic Heinrich layers. Thus, the K/Ar data are robust in their indication of a dominant Labrador Sea ice-rafted source to even the finest sediment fraction in the eastern North Atlantic during the massive detrital carbonate-bearing Heinrich events of the last glacial cycle (H1, H2, H4, H5). Close correspondence of the radiogenic argon concentration (40Ar*) from the de-carbonated <63-μm fractions from V28-82 with the <2- and 2–16-μm fractions from the Driezack seamounts demonstrates that this measurement is a rapid and reliable method for correlating these layers within their belt of distribution.A 40Ar/39Ar-based K/Ar age of 433±5 million years for H11 in V28-82 is within the range of published data from background sediments in the eastern North Atlantic, and is consistent with published results across this interval in the Driezack seamounts. In contrast, the 40Ar/39Ar-based K/Ar age of H11 in the western Atlantic core EW9303-JPC37 is 614±5 million years. A brick red sample from approximately the interval of H3 of core EW9303-GGC40 yielded a 40Ar/39Ar-based K/Ar age of 567±1 million years, comparable to the published range of 523–543 Ma from the 2–16-μm fractions from that interval on the Dreizack seamounts. Both JPC37 and GGC40 are located in the path of the North Atlantic Drift. The older ages from western samples of H3 and H11 may result from dilution of a Hudson Strait source or an elevated age from southeastern Laurentide sources.  相似文献   

17.
The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.  相似文献   

18.
A river section at Słupia Nadbrzeżna, central Poland, has been proposed as a candidate Turonian – Coniacian (Cretaceous) GSSP, in combination with the Salzgitter-Salder quarry section of Lower Saxony, Germany. Results of a high-resolution (25 cm) palynological study of the boundary interval in the Słupia Nadbrzeżna section are presented. Terrestrial palynomorphs are rare; marine organic-walled dinoflagellate cysts dominate the palynological assemblage. The dinoflagellate cyst assemblage has a low species richness (5–11 per sample; total of 18 species recorded) and diversity (Shannon index H = 0.8–1.4), dominated by four taxa: Circulodinium distinctum subsp. distinctum; Oligosphaeridium complex; Spiniferites ramosus subsp. ramosus; Surculosphaeridium longifurcatum. Declining proportions of O. complex and S. ramosus subsp. ramosus characterise the uppermost Turonian, with an increased dominance of S. longifurcatum in the lower Coniacian. The Turonian – Coniacian boundary interval includes an acme of C. distinctum subsp. distinctum in the upper Mytiloides scupini Zone, a dinoflagellate cyst abundance maximum in the Cremnoceramus walterdorfensis walterdorfensis Zone, and the highest occurrence of Senoniasphaera turonica in the basal Coniacian lower Cremnoceramus deformis erectus Zone. Most previously reported Turonian – Coniacian boundary dinoflagellate cyst marker species are absent; a shallow-water oligotrophic epicontinental depositional setting, remote from terrestrial influence, likely limited species diversity and excluded many taxa of biostratigraphic value.  相似文献   

19.
Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea‐surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2–3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice‐core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号