首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In the Framework Convention on Climate Change an ultimate objective is formulated that calls for stabilization of the concentrations of greenhouse gases in the atmosphere at a level that would allow ecosystems to adapt naturally, safeguard food supply and enable sustainable development to proceed in a sustainable manner. This paper addresses the possible contribution of science to translate this rather vague and ambiguous objective into more practicable terms. We propose a regionalized, risk-based six-step approach that couples an analysis of ecosystem vulnerability to the results of simulations of climate change. An ultimate objective level could be determined in terms of stabilized concentrations of greenhouse gases in the atmosphere. The level and timing of this stabilization would be determined by a political appreciation of associated risks for managed and unmanaged ecosystems. These risks would be assessed by region in an internationally coordinated scientific effort, followed by a global synthesis.  相似文献   

2.
Increasing reliance on natural gas (methane) to meet global energy demands holds implications for atmospheric CO2 concentrations. Analysis of these implications is presented, based on a logistic substitution model viewing energy technologies like biological species invading an econiche and substituting in case of superiority for existing species. This model suggests gas will become the dominant energy source and remain so for 50 years, peaking near 70 percent of world supply. Two scenarios of energy demand are explored, one holding per capita consumption at current levels, the second raising the global average in the year 2100 to the current U.S. level. In the first (efficiency) scenario concentrations peak about 450 ppm, while in the second (long wave) they near 600 ppm. Although projected CO2 concentrations in a methane economy are low in relation to other scenarios, the projections confirm that global climate warming is likely to be a major planetary concern throughout the twenty-first century. A second finding is that data on past growth of world per capita energy consumption group neatly into two pulses consistent with longwave theories in economics.  相似文献   

3.
The carbon isotopic ratio of atmospheric carbon dioxide at Tsukuba,Japan   总被引:1,自引:0,他引:1  
To find out the secular and seasonal trends of the 13C value and CO2 concentration in the surface air and the determination of the 13C in the atmospheric CO2 collected at Tsukuba Science City was carried out during the period from July 1981 to October 1983. The monthly average of the 13C value of CO2 in the surface air collected at 1400 LMT ranged from -7.52 to \s-8.45 with an average of -7.96±0.25 and the CO2 concentration in the air varied from 334.5 l 1-1 to 359 l 1-1 with an average of 347.2±6.3 l 1-1. The 13C value is high in summer and low in winter and is negatively correlated with the CO2 concentration. In general, the relationship between the 13C and the CO2 concentration is explainable by a simple mixing model of two different constant carbon isotopic species but the relationship does not always follow the model. The correlation between the 13C value and the CO2 concentration is low during the plant growth season and high at other times. The observed negative deviation of the 13C value from the simple mixing model in the plant growth season is partly due to the isotopic fractionation process which takes place in the land biota.  相似文献   

4.
Sensitivity Analysis of Emissions Corridors for the 21st Century   总被引:1,自引:1,他引:0  
We investigate the sensitivity of emissions corridors for the 21st century to various factors that are currently under debate in the climate change arena. Emissions corridors represent the range of admissible emissions futures that observe some predefined guardrails on the future development of the human-climate system. They are calculated on the conceptual and methodological basis of the tolerable windows approach. We assess the sensitivity of the corridors to the choice of time-resolved as well as intertemporally aggregated guardrails that exclude an intolerable amount of climate change on the one hand and unbearable mitigation burdens on the other. In addition, we investigate the influence of climate sensitivity on the corridors.Results show a large dependence of emissions corridors on the choice of guardrails and the value of climate sensitivity T 2CO 2. If the guardrail on climate change is specified in terms of a maximum admissible global mean temperature increase T max to be observed at any time, the size of the corridors is predominantly determined by a climate impact resilience parameter =T max/T 2CO 2. As is varied from values below 0.5 to values above 1.5, we move from cases where no emissions profile whatsoever can observe all guardrails, to cases where no significant emissions reduction seems necessary given the range of emissions scenarios for the 21st century. The limits on admissible mitigation efforts influence predominantly the timing and the economic viability of emissions reductions. A large mitigation flexibility allows for wait then run emissions paths, while low flexibility asks for a significantly more prudent approach.  相似文献   

5.
The change in the Earth's equilibrium global mean surface temperature induced by a doubling of the CO2 concentration has been estimated as 0.2 to 10 K by surface energy balance models, 0.5 to 4.2 K by radiative-convective models, and 1.3 to 4.2 K by general circulation models. These wide ranges are interpreted and quantified here in terms of the direct radiative, forcing of the increased CO2, the response of the climate system in the absence of feedback processes, and the feedbacks of the climate system. It is the range in the values of these feedbacks that leads to the ranges in the projections of the global mean surface warming. The time required for a CO2-induced climate change to reach equilibrium has been characterized by an e-folding time e with values estimated by a variety of climate/ocean models as 10 to 100 years. Analytical and numerical studies show that this wide range is due to the strong dependence of e on the equilibrium sensitivity of the climate model and on the effective vertical thermal diffusivity of the ocean model. A coupled atmosphere-ocean general circulation model simulation for doubled CO2 suggestes that, as a result of the transport of the CO2-induced surface heating into the interior of the ocean, e 50 to 100 years. Theoretical studies for a realistic CO2 increase between 1850 and 1980 indicate that this sequestering of heat into the ocean's interior is responsible for the concomittant warming being only about half that which would have occurred in the absence of the ocean. These studies also indicate that the climate sytem will continue to warm towards its as yet unrealized equilibrium temperature change, even if there is no further increase in the CO2 concentration.  相似文献   

6.
Atmospheric samples from savanna burnings were collected in the Ivory Coast during two campaigns in January 1989 and January 1991. About 30 nonmethane hydrocarbons from C2 to C6, carbon monoxide, carbon dioxide and methane were measured from the background and also at various distances from the burning. Concentrations in the fire plume reached ppmv levels for C2-C4 hydrocarbons, and 5300, 500 and 93 ppmv for CO2, CO and CH4 respectively. The excess in the mixing ratios of these gases above their background level is used to derive emission factors relative to CO and CO2. For the samples collected immediately in the fire plume, a differentiation between high and low combustion efficiency conditions is made by considering the CO/CO2 ratio. Ethene (C2H4), acetylene (C2H2), ethane (C2H6) and propene (C3H6) are the major NMHC produced in the flaming stage, whereas a different pattern with an increasing contribution of alkanes is observed in samples typical of post flaming processes. A strong correlation between methane and carbon monoxide suggests that these compounds are produced during the same stage of the combustion. In samples collected at a distance from the fire and integrated over a period of 30 minutes, the composition is very similar to that of flaming. NMHC/CO2 is of the order of 0.7%, CH4/CO2 of the order of 0.4% and CO/CO2 of the order of 6.3%. From this study, a global production by African savanna fires is derived: 65 Tg of CO-C, 4.2 Tg of CH4-C and 6.7 Tg of NMHC-C. Whereas acetylene can be used as a conservative tracer of the fire plumes, only ethene, propene and butenes can be considered in terms of their direct photochemical impact.  相似文献   

7.
Summary A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present January climate.List of Symbols west-east mesh size in geographic coordinates south-north mesh size in geographic coordinates N number of large-scale weather classes n number of regional-scale event classes p pressure P probability Ø large-scale event regional-scale event q v specific humidity potential temperature u west-east wind component v south-north wind componentAbbreviations AGL above ground level - LT local time - UTC universal time coordinated With 13 Figures  相似文献   

8.
The stability of the climate-vegetation system in the northern high latitudesis analysed with three climate system models of different complexity: A comprehensive 3-dimensional model of the climate system, GENESIS-IBIS, and two Earth system models of intermediate complexity (EMICs), CLIMBER-2 andMoBidiC. The biogeophysical feedback in the latitudinal belt 60–70° N, although positive, is not strong enough to support multiple steady states: A unique equilibriumin the climate-vegetation system is simulated by all the models on a zonal scale for present-day climate and doubled CO2 climate.EMIC simulations with decreased insolation also reveal a unique steady state. However, the climate sensitivity to tree cover, TF, exhibits non-linear behaviour within the models. For GENESIS-IBIS and CLIMBER-2, TF islower for doubled CO2 climate than for present-day climate due to a shorter snow season and increased relative significance ofthe hydrological effect of forest cover. For the EMICs, TF is higher for low tree fraction than for high treefraction, mainly due to a time shift in spring snow melt in response to changes in tree cover. The climate sensitivity to tree coveris reduced when thermohaline circulation feedbacks are accounted for in the EMIC simulations. Simpler parameterizations of oceanic processes have opposite effects on TF: TF is lower in simulations with fixed SSTs and higher in simulations with mixed layer oceans. Experiments with transient CO2 forcing show climate and vegetation not in equilibrium in the northern high latitudes at the end of the 20thcentury. The delayed response of vegetation and accelerated global warming lead to rather abrupt changes in northern vegetation cover in the first halfof the 21st century, when vegetation cover changes at double the present day rate.  相似文献   

9.
E- turbulence model predictions of the neutralatmospheric boundary layer (NABL) are reinvestigated to determine thecause for turbulence overpredictions found in previous applications. Analytical solutions to the coupled E and equations for the case of steady balance between transport and dissipation terms, the dominant balance just below the NABL top, are derived. It is found that analytical turbulence profiles laminarizeat a finite height only for values of closure parameter ratio c 2 /e equal toor slightly greater than one, with laminarization as z for greater . The point = 2 is additionally foundthat where analytical turbulent length scale (l) profilesmade a transition from ones ofdecreasing ( < 2) to increasing ( > 2)values with height. Numerically predicted profiles near the NABL topare consistent with analytical findings. The height-increasingvalues of l predicted throughout the NABL with standard values ofclosure parameters thus appear a consequence of 2.5(> 2), implied by these values (c 2 = 1.92, = 1.3, e = 1). Comparison of numericalpredictions with DNS data shows that turbulence overpredictions obtained with standard-valued parameters are rectifiedby resetting and e to 1.1 and 1.6, respectively, giving, with c 2 = 1.92, 1.3, and laminarization of the NABL's cappingtransport-dissipation region at a finite height.  相似文献   

10.
This article is a review of the modeling of potential CO2 effects on climate, intended for an interdisciplinary audience of mathematically oriented scientists and engineers. The carbon dioxide (CO2) content of the atmosphere has shown a systematic increase each year since regular measurements began in 1958. A major source of CO2 is the combustion of fossil fuels. A number of studies of the sensitivity of climate to increases in the CO2 content of the atmosphere have been published. This report is an assimilation of the results of some of these studies. The climate sensitivity problem is introduced through a discussion of the various atmospheric feedbacks and the ice albedo feedback. The most recent estimates of the various feedbacks are used to estimate upper and lower bounds of the globally averaged temperature increase that would accompany a doubling of atmospheric CO2 content. The results of a CO2 doubling experiment using a simple general circulation model are reviewed, and the possible response of the cryosphere is discussed.  相似文献   

11.
Jian Ni 《Climatic change》2001,49(3):339-358
The carbon storage of terrestrial ecosystems in China was estimated using acommon carbon density method for vegetation and soils relating to thevegetation types. Usingmedian density estimates, carbon storage of 35.23 Gt (1 Gt = 1015g) in biomass and119.76 Gt in soils with total of 154.99 Gt were calculated based on thebaseline distribution of37 vegetation types. Total carbon storage of the median estimates at differentspatial resolutionswas 153.43, 158.08 and 158.54 Gt, respectively, for the fine (10),median (20) and coarse (30)latitude × longitude grids. There were differences of –1.56, +3.09and +3.55 Gt carbon storagebetween baseline vegetation and those at different spatial resolutions. Changein mappingresolution would change area estimates and hence carbon storage estimates. Thefiner the spatialresolution in mapping vegetation, the closer the carbon storage to thebaseline estimation. Carbonstorage in vegetation and soils for baseline vegetation is quite similar tothat of biomes predictedby BIOME3 for the present climate and CO2 concentration of 340ppmv. Climate changealone as well as climate change with elevated CO2 concentrationwill produce an increasein carbon stored by vegetation and soils, especially a larger increase in thesoils. Total mediancarbon storage of terrestrial ecosystems in China will increase by 5.09 Gt and15.91 Gt for theclimate scenario at CO2 concentration of 340 ppmv and 500 ppmv,respectively. This ismainly due to changes in vegetation areas and the effects of changes inclimate and CO2concentration.  相似文献   

12.
The problem of CO2 control in the atmosphere is tackled by proposing a kind of fuel cycle for fossil fuels where CO2 is partially or totally collected at certain transformation points and properly disposed of.CO2 is disposed of by injection into suitable sinking thermohaline currents that carry and spread it into the deep ocean that has a very large equilibrium capacity.The Mediterranean undercurrent entering the Atlantic at Gibraltar has been identified as one such current; it would have sufficient capacity to deal with all CO2 produced in Europe even in the year 2100.  相似文献   

13.
Refuge has patchy vegetation in sandy soil. During midday and at night, the surface sources and sinks for heat and moisture may thus be different. Although the Sevilleta is broad and level, its metre-scale heterogeneity could therefore violate an assumption on which Monin-Obukhov similarity theory (MOST) relies. To test the applicability of MOST in such a setting, we measured the standard deviations of vertical (w) and longitudinal velocity (u), temperature (t), and humidity (q), the temperature-humidity covariance (¯tq), and the temperature skewness (St). Dividing the former five quantities by the appropriate flux scales (u*, *, and q*) yielded the nondimensional statistics w/u*, u/u*, t/|t*|, q/|q*|, and ¯tq/t*q*. w/u*, t/|t*|, and St have magnitudes and variations with stability similar to those reported in the literature and, thus, seem to obey MOST. Though u/u* is often presumed not to obey MOST, our u/u* data also agree with MOST scaling arguments. While q/|q*| has the same dependence on stability as t/|t*|, its magnitude is 28% larger. When we ignore ¯tq/t*q* values measured during sunrise and sunset transitions – when MOST is not expected to apply – this statistic has essentially the same magnitude and stability dependence as (t/t*)2. In a flow that truly obeys MOST, (t/t*)2, (q/q*)2, and ¯tq/t*q* should all have the same functional form. That (q/q*)2 differs from the other two suggests that the Sevilleta has an interesting surface not compatible with MOST. The sources of humidity reflect the patchiness while, despite the patchiness, the sources of heat seem uniformly distributed.  相似文献   

14.
Based on univariate correlation and coherence analyses and considering the physical basis of the relationships, a simple multiforced (multiple) statistical concept is used which correlates observational climatic time series simultaneously with volcanic, solar, ENSO, and the anthropogenic greenhouse gases forcing. This is appropriate to remove some natural climate noise in the observed data and to evaluate the components (signals) possibly due to the anthropogenic greenhouse gas forcing (CO2, or equivalent CO2 implying additional gases) during industrial time. In this paper, we apply this technique to 100 global box data time series 1890–1985, of the surface air temperature, using observed data from Hansen and Lebedeff. The results are presented in terms of latitudinal-seasonal and regional trends, where the observed trend patterns are compared with the hypothetical signals (statistical assessments) possibly due to anthropogenic greenhouse forcing. These latter signals can be amplified to enable a comparison with corresponding results from general circulation model (GCM) CO2 doubling experiments. These observed-statistical assessments lead to results which are, at least qualitatively and in respect to the zonal mean temperatures, very similar to some GCM experiments indicating the maximum CO2 doubling signals (statistical assessment > 12 K) in the arctic winter. However, these signals are moderate in the tropics and in the Southern Hemisphere (global average 2.8–4.4 K). As far as the industrial signals are concerned (observed period) these signals are somewhat larger (maximum 7 K, global average 0.5–0.9 K) than the observed trends (maximum 5 K, global average 0.5 K). Phase shifts of cause and effect may amplify these signals but are very uncertain.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

15.
The variations of and in the drainage flow in the Brush Creek valley of western Colorado are investigated using data from Doppler acoustic sodars and instrumented towers. The data were obtained on two experimental nights during the 1984 ASCOT field study. There is good agreement between the variations derived from low-level observations of the sodars and those derived from the towers located throughout the valley. The observed hourly average and in the nocturnal drainage flow are about 20 ° to 25 ° and 5 °, respectively; these values are much larger than those generally observed over flat terrain during nighttime stable conditions. After sunrise (about 0600 MST), as the valley warms and the flow direction changes to up-valley, these parameters increase sharply to their peak values at about 0800 MST and then decrease to their normal daytime values after about two hours.In the drainage flow, the hourly average varies inversely with wind speed according to the relation u 0.7ms-1. The vertical standard deviation is much less enhanced by complex terrain than the horizontal standard deviation. The observed values are predicted fairly well by the local similarity theory.Oak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 andOak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 and  相似文献   

16.
A pair of parallel cold wires separated in either the vertical or lateral direction was used to obtain the three components x, y, z of the temperature derivative in the streamwise, lateral and vertical directions, respectively. The average absolute skewness values of x and z are nonzero and approximately equal, while the skewness of y is approximately zero. These results appear to be consistent with the presence of a large, three-dimensional organised structure in the surface layer. There is an apparent low-frequency contamination in the spectral density of y and z due mainly to small errors in estimating the sensitivity of the cold wires. The temperature derivatives were high-pass filtered, the filter being set to remove possible contributions from the large structure and to minimise low-frequency sensitivity contamination. The filtered rms ratios \~x/\~y and \~x/\~z were in the range 0.7 to 0.9, a result in qualitative agreement with that obtained in the laboratory boundary layer by Sreenivasan et al. (1977). The skewness of filtered x or z is negligible, consistent with local isotropy of small-scale temperature fluctuations and in support of the high wavenumber spectral isotropy discussed in Antonia and Chambers (1978).  相似文献   

17.
Mechanisms of shrubland expansion: land use,climate or CO2?   总被引:11,自引:0,他引:11  
Encroachment of trees and shrubs into grasslands and the thicketization of savannas has occurred worldwide over the past century. These changes in vegetation structure are potentially relevant to climatic change as they may be indicative of historical shifts in climate and as they may influence biophysical aspects of land surface-atmosphere interactions and alter carbon and nitrogen cycles. Traditional explanations offered to account for the historic displacement of grasses by woody plants in many arid and semi-arid ecosystems have centered around changes in climatic, livestock grazing and fire regimes. More recently, it has been suggested that the increase in atmospheric CO2 since the industrial revolution has been the driving force. In this paper we evaluate the CO2 enrichment hypotheses and argue that historic, positive correlations between woody plant expansion and atmospheric CO2 are not cause and effect.Please direct all correspondence to the senior author.  相似文献   

18.
A well-established and widely used correlative climate-vegetation model (Holdridge Life Zone model) was compared to three mechanistic simulation models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant-Soil System (MAPSS)) for the conterminous United States under contemporary climate and a set of future climates prescribed by three Global Circulation Model experiments. Output from the mechanistic models were from the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) intercomparison. Holdridge modeling approaches, using a Simple implementation (vegetation distribution based on biotemperature and precipitation alone) or a Full implementation (vegetation distribution based on biotemperature, precipitation, altitudinal region, latitudinal belt, and transitional vegetation zones), represented current potential natural U.S. vegetation poor to fair, respectively. The more sophisticated mechanistic models were superior at reproducing potential vegetation under current climate compared to Holdridge, although there was significant variability among these models. The Holdridge implementations generally showed similar or greater climate sensitivity with respect to spatial redistribution of vegetation compared to the mechanistic models run both with and without doubled CO2 levels; however, the sensitivity of the Holdridge model depended on the implementation. Reduced sensitivity of the mechanistic models arises from direct (physiological) CO2 effects and other compensating feedbacks not captured by the Holdridge model. The greater degree of physical realism in the mechanistic models makes them the model class of choice for climate impact assessment. However, under circumstances of limited data availability, computation resources, and access to mechanistic models and model expertise, simple correlational models such as Holdridge may be the only method that can be applied. The paper makes some recommendations on the use of the Holdridge model for impact assessment if it is the only available model.  相似文献   

19.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

20.
During 1987 and 1988 in Australia there have been two national meetings on the greenhouse effect and a campaign designed to increase public awareness. A study of the backgrounds, level of comprehension and attitudes of attendees at two state Greenhouse-88 meetings has been undertaken by means of a questionnaire survey and a set of personal interviews. Two crucial caveats pertain: (1) some of the questions reflect the prejudices of the author who is an atmospheric scientist and much of the interpretation is similarly tainted and (2) the respondents comprise a small, self-selected and probably highly motivated group. All the ensuing results should be viewed in the context of these caveats.Over 97% of the respondents believe that action should be taken now to alleviate or mitigate the effects of increased greenhouse gases. Despite the fact that the majority of the 321 respondents are professional people (73%) and that over 53% have tertiary level educational qualifications, there was a failure to grasp some fundamental issues. For example, only 120 (37%) correctly recognized that N2 is not a greenhouse agent whilst also agreeing that CO2, CH4 and CFCs are greenhouse agents. On the other hand, the respondents generally demanded a relatively low level of confidence (50% to 70% certainty) about the greenhouse issue from scientists before action is taken. Sixty-four percent believe that life will be worse for them and/or their children in Australia in Greenhouse 2025 with the youngest age range being the second most pessimistic group about the future.Relatively little interest was shown in the possibility of obtaining more information on topics that interest climatic scientists such as the validity of measured temperature trends and inadequacies/errors in climate models but more information was desired on the social and economic implication and, interestingly, on the scientific background to the issues. Overall, teachers are perceived as trying to increase understanding; whereas politicians, multinational corporations, the media and some extreme environmentalists are perceived as often attempting to deceive intentionally. Scientists are seen as neither especially malevolent nor benign. A possible conclusion which might be drawn is that by attempting to simplify issues for public debate, scientists may significantly reduce, or even remove entirely, any chance of re-association of connected issues by members of the public. Perhaps more importantly, scientists need to recognize and learn to use the knowledge that the public may have the right views for the wrong reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号