首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Oxygen isotope compositions of phosphate in tooth enamel from large mammals (i.e. horse and red deer) were measured to quantify past mean annual air temperatures and seasonal variations between 145 ka and 33 ka in eastern France. The method is based on interdependent relationships between the δ18O of apatite phosphate, environmental waters and air temperatures. Horse (Equus caballus germanicus) and red deer (Cervus elaphus) remains have δ18O values that range from 14.2‰ to 17.2‰, indicating mean air temperatures between 7°C and 13°C. Oxygen isotope time series obtained from two of the six horse teeth show a sinusoidal-like signal that could have been forced by temperature variations of seasonal origin. Intra-tooth oxygen isotope variations reveal that at 145 ka, winters were colder (? 7 ± 2°C) than at present (3 ± 1°C) while summer temperatures were similar. Winter temperatures mark a well-developed West–East thermal gradient in France of about ? 9°C, much stronger than the ?4°C difference recorded presently. Negative winter temperatures were likely responsible for the extent and duration of the snow cover, thus limiting the food resources available for large ungulates with repercussions for Neanderthal predators.  相似文献   

2.
The interior thermal regime of a field-scale experimental waste rock pile in the Northwest Territories, Canada, was studied. Test pile construction was completed in the summer 2006, and temperature data was collected continuously since that time to February 2009. The temperature data indicates the test pile cooled over the study period, with an average heat energy release of −2.5 × 104 and −2.6 × 104 MJ in 2007 and 2008, respectively. The mean annual air temperature (MAAT) at the site was −8.9 °C during the period between 2006 and 2009, with a permafrost table at a depth of 4 m in bedrock away from the pile. Because of this cold environment, the upward movement rate of the 0 °C isotherm into the test pile at its base was approximately 1.5 m a−1 during 2007 and 2008. Thermistor strings installed immediately below the base of the test pile showed the test-pile basal temperatures remained near and below 0 °C during the study period. Furthermore, due to low rates of sulfide mineral oxidation, elevated temperatures in the interior of the test pile were not observed. The average air velocity in the pore space in July 2007 and 2008 was about one third of that during January of each year based on temperature distributions. Therefore, due to higher air velocity during the winter, it is expected that heat transfer is greater during winter.  相似文献   

3.
This study forms part of a wider investigation of late Quaternary environments in the Southern Hemisphere. We here review the terrestrial and near-shore proxy data from Australia, Indonesia, Papua New Guinea (PNG), New Zealand and surrounding oceans during 35–10 ka, an interval spanning the lead-up to the Last Glacial Maximum (LGM), the LGM proper (21 ± 2 ka), and the ensuing deglaciation. Sites selected for detailed discussion have a continuous or near continuous sedimentary record for this time interval, a stratigraphically consistent chronology, and one or more sources of proxy climatic data. Tropical Australia, Indonesia and PNG had LGM mean annual temperatures 3–7 °C below present values and summer precipitation reduced by at least 30%, consistent with a weaker summer monsoon and a northward displacement of the Intertropical Convergence Zone. The summer monsoon was re-established in northwest Australia by 14 ka. Precipitation in northeast Australia was reduced to less than 50% of present values until warmer and wetter conditions resumed at 17–16 ka, followed by a second warmer, wetter phase at 15–14 ka. LGM temperatures were up to 8 °C lower than today in mainland southeast Australia and up to 4 °C cooler in Tasmania. Winter rainfall was much reduced throughout much of southern Australia although periodic extreme flood events are evident in the fluvial record. Glacial advances in southeast Australia are dated to 32 ± 2.5, 19.1 ± 1.6 and 16.8 ± 1.4 ka, with periglacial activity concentrated towards 23–16 ka. Deglaciation was rapid in the Snowy Mountains, which were ice-free by 15.8 ka. Minimum effective precipitation in southern Australia was from 14 to 12 ka. In New Zealand the glacial advances date to ~28, 21.5 and 19 ka, with the onset of major cooling at ~28 ka, or well before the LGM. There is no convincing evidence for a Younger Dryas cooling event in or around New Zealand, but there are signs of the Antarctic Cold Reversal in and around New Zealand and off southern Australia. There remain unresolved discrepancies between the climates inferred from pollen and those inferred from the beetle and chironomid fauna at a number of New Zealand sites. One explanation may be that pollen provides a generalised regional climatic signal in contrast to the finer local resolution offered by beetles and chironomids. Sea surface temperatures (SSTs) were up to 5 °C cooler during the LGM with rapid warming after 20 ka to attain present values by 15 ka. The increase in summer monsoonal precipitation at or before 15 ka reflects higher insolation, warmer SSTs and steeper thermal gradients between land and sea. The postglacial increase in winter rainfall in southern Australia is probably related to the southward displacement of the westerlies as SSTs around Antarctica became warmer and the winter pack ice and Antarctic Convergence Zone retreated to the south.  相似文献   

4.
Relict sand wedges are ubiquitous in southern Patagonia. At six sites we conducted detailed investigations of stratigraphy, soils, and wedge frequency and characteristics. Some sections contain four or more buried horizons with casts. The cryogenic features are dominantly relict sand wedges with an average depth, maximum apparent width, minimum apparent width, and H/W of 78, 39, 3.8, and 2.9 cm, respectively. The host materials are fine-textured (silt loam, silty clay loam, clay loam) till and the infillings are aeolian sand. The soils are primarily Calciargidic Argixerolls that bear a legacy of climate change. Whereas the sand wedges formed during very cold (?4 to ?8 °C or colder) and dry (ca. ≤100 mm precipitation/yr) glacial periods, petrocalcic horizons from calcium carbonate contributed by dustfall formed during warmer (7 °C or warmer) and moister (≥250 mm/yr) interglacial periods. The paleo-argillic (Bt) horizons reflect unusually moist interglacial events where the mean annual precipitation may have been 400 mm/yr. Permafrost was nearly continuous in southern Patagonia during the Illinoian glacial stage (ca. 200 ka), the early to mid-Pleistocene (ca. 800–500 ka), and on two occasions during the early Pleistocene (ca. 1.0–1.1 Ma).  相似文献   

5.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

6.
Only fragmentary biostratigraphical interstadial data exist from northern European high latitudes. The palaeoenvironmental interpretations for the early part of the Last Glaciation in northern Fennoscandia are mainly based on palynological evidence that suggests open birch woodland and a sub-arctic climate. Plant macrofossils from the Sokli sediment sequence in Finnish Lapland provide different evidence of interstadial climate conditions. The assemblage includes several species that currently have considerably more southern distribution ranges. This indicates that ca 100,000 years ago summer temperatures were warmer than today. The mean minimum July temperature may have been as high as 16 °C and the effective temperature sum may have been 1000 in day-degree units (d.d.), the modern values being 13 °C and 650 d.d., respectively. The contemporary astronomical forcing mechanisms may have resulted in a weaker north–south temperature gradient and a longer growing period, creating more favourable climate conditions compared with today.  相似文献   

7.
Vegetation and climate since the LGM in eastern Hokkaido were investigated based on a pollen record from marine core GH02-1030 from off Tokachi in the northwestern Pacific. We also examined pollen spectra in surface samples from Sakhalin to compare and understand the climatic conditions of Hokkaido during the last glacial period. Vegetation in the Tokachi region in the LGM (22–17 ka) was an open boreal forest dominated by Picea and Larix. During the last deglaciation (17–10 ka), vegetation was characterized by abundant Betula. In the Kenbuchi Basin, central Hokkaido, a remarkable increase of Larix and Pinus occurred in the LGM and the last deglaciation, which was assigned as the “Kenbuchi Stadial.” Comparison of climatic data between the core GH02-1030 and that of Kenbuchi Basin demonstrates that variations in temperature and precipitation were larger in inland Hokkaido than in the maritime area of the Pacific coast. During the LGM in the Tokachi region, the August mean temperature was about 5 °C lower, and annual precipitation was about 40% lower than today. In the Kenbuchi Basin, central Hokkaido, the August mean temperature was about 8 °C lower, and annual precipitation was half that of today. During the last deglaciation, August mean temperatures were about 3 °C lower, and annual precipitation was about 30% lower than today in the Tokachi region. In the Kenbuchi Basin, August mean temperatures were about 5–8 °C lower, and annual precipitation was about 40–60% lower than today. Cold ocean water and a strengthened summer monsoon after 15 ka may have resulted in the formation of advection fogs, reduced summer temperatures, and a decrease in the seasonal temperature difference in the Tokachi district, which established favorable maritime conditions for Betula forests.  相似文献   

8.
Chironomids and pollen were studied in a radiocarbon-dated sediment sequence obtained from a former lake near the Maloja Pass in the Central Swiss Alps (1865 m a.s.l.) to reconstruct the Lateglacial environment. Pollen assemblages imply a vegetation development around the Maloja Pass from shrub tundra at the beginning of the Allerød to coniferous forest during the early Holocene with a lowering of the timberline during the Younger Dryas. Chironomid assemblages are characterized by several abrupt shifts in dominant taxa through the Lateglacial. The occurrence of taxa able to survive hypoxia in the second part of the Allerød and during the Preboreal, and their disappearance at the onset of the Younger Dryas cold phase suggest summer thermal stratification and unfavourable hypolimnetic oxygen conditions in the palaeo-lake during the warmer periods of the Lateglacial interstadial and early Holocene. Mean July air temperatures were reconstructed using a chironomid-temperature transfer function from the Alpine region. The pattern of reconstructed temperature changes agrees well with the Greenland δ18O record and other Lateglacial temperature inferences from Central Europe. The inferred July temperatures of ca 10.0 °C during most of the Allerød were slightly lower than modern values (10.8 °C) and increased up to ca 11.7 °C (i.e., above present-day values) at the end of the Allerød. The first part of the Younger Dryas was colder (ca 8.8 °C) than the second part (ca 9.8 °C). During most of the Preboreal, the temperatures persisted within the limits of 13.5–14.5 °C (i.e., ca 3 °C above present-day values). The amplitudes of temperature changes at the Allerød–Younger Dryas–Preboreal transitions were ca 3.5–4.0 °C. The temperature reconstruction also shows three short-lived cooling events of ca 1.5–2.0 °C, which may be attributed to the centennial-scale Greenland Interstadial events GI-1d and GI-1b, and the Preboreal Oscillation.  相似文献   

9.
Modern meteorological observations in South China from 1960 to 2009 show a strong correlation between winter temperatures and two snowfall parameters, the southern boundary of the snow and the number of snowy days. Based on this relationship, the variation in annual winter mean temperature in South China from 1736 to 2009 was reconstructed using data acquired from Chinese historical documents dating from the Qing dynasty, such as memos and local gazettes. The reconstructed time series were used to analyse variations in winter temperature in South China. Significant interannual and interdecadal changes were found. The maximum temperature difference between neighbouring years was 3.1 °C for 1958–2009 and 3.0 °C for 1736–1957, whereas the maximum temperature difference between adjacent decades was 0.8 °C for the 1960s–2000s and 0.6 °C for the 1740s–1950s. The 2000s was the warmest decade; the mean temperature was 1.6 °C higher than that of the 1870s, which was the coldest decade between the 1740s and the 2000s. The mean winter temperature was warmer in the 18th and 20th centuries and coldest in the 19th century.  相似文献   

10.
Medium to coarse-grained Neo-Proterozoic Nagthat siliciclastic rocks form a part of the Krol Formation in the Lesser Himalayan geotectonic zone. Fluid inclusion and geochemical studies have been carried out on the Nagthat siliciclastics from the Tons valley to determine their provenance during the Proterozoic and their recrystallisation during maximum burial to uplift. Fluid inclusion studies have been carried out on detrital, recrystallised quartz grains and quartz overgrowths. Major and trace element analyses of the siliciclastics, the relationships of SiO2 with various trace elements, and the association of various trace elements with mineral species suggest a granitic source for these siliciclastics. Primary Q1 aqueous brine inclusions and Q3 H2O–CO2 fluid with 0.9 gm/cm3 CO2 density in detrital quartz grains characterised the protolith of the sandstone as granite or metamorphic rocks. H2O–NaCl fluids participated in the cementation history, temperatures of quartz overgrowth from 198 to 232 °C show the effect of maximum burial. The re-equilibration of the primary fluid due to elevated internal pressure > confining pressure is evident from features like ‘C’ shaped cavities, stretching of the inclusions, their migration, decrepitation clusters, etc. During recrystallisation these inclusions were equilibrated at 187 ° and 235 °C in a restricted fluid of aqueous, moderately saline composition. The observed inclusion morphology is attributed to a decrease in external pressure related to isothermal decompression uplift.  相似文献   

11.
《Quaternary Science Reviews》2007,26(1-2):142-154
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP).The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.  相似文献   

12.
After the Paleocene–Eocene Thermal Maximum (PETM), global temperature and CO2 levels decreased concurrently in the middle-late Eocene. Using different approaches, estimated CO2 levels of the middle-late Eocene are very similar to the 1000 ppm CO2 level projected for the next 100 years. As a result of increasing greenhouse gas concentrations, the average global temperature is projected to increase from 1.4 to 5.8 °C by 2100 relative to 2001 levels. Thus, the middle-late Eocene may be the best ancient analogue for a future with increased temperatures due to burning of fossil fuels.In order to explore the sensitivity range of global annual temperature with respect to CO2 concentration, exact atmospheric CO2 concentrations and air temperatures of ancient analogs must be known. Previous palynological studies provide only indirect estimates of temperature; however, the homogenization temperature of fluid inclusions in halites, obtained by the ‘cooling nucleation’ method, can provide the exact temperature of saline lake water, which is similar to overlying air temperature in shallow lakes. In this paper, we measured the range of homogenization temperatures (from 5.8 to 43.3 °C) of fluid inclusions in middle-late Eocene halites of the Yunying depression, central China. The maximum homogenization temperature of fluid inclusions (Thmax) in these middle-late Eocene halites is 4.6 °C higher than the modern extreme highest temperature (38.7 °C) recorded for this area.  相似文献   

13.
《Journal of Structural Geology》2001,23(6-7):1007-1013
The phenomenon of shear-heating is generally difficult to recognise from petrologic evidence alone. Establishing that shear zones attain higher temperatures than the surrounding country rocks requires independent evidence for temperature gradients. In the Musgrave Block, central Australia, there is a clear spatial association between shear zones and interpreted elevated temperatures. Eclogite facies shear zones that formed at ∼550 Ma record temperatures of ∼650–700°C. Outside the high-pressure shear zones, minerals with low closure temperatures such as biotite (∼450°C in the 40Ar–39Ar and Rb–Sr systems), preserve ages >800 Ma, suggesting that these rocks did not experience temperatures greater than about 450°C at ∼550 Ma for any extended period. Thus, the shear zones record temperatures that are ∼200°C higher than the surrounding country rocks. Simple calculations show that the combination of relatively high shear stresses (∼100 MPa) and high strain rates (∼10−11 s−1) for short durations (<1 Ma) can account for the observed apparent temperature variations. The evidence indicates that shear heating is the dominant mechanism for localised temperature increases in the shear zones, while the country rock remained at relatively lower temperatures.  相似文献   

14.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

15.
Computer-based reconstruction of the physicochemical conditions of formation of the Krasnov (16° N) and Ashadze (13° N) submarine systems in the Mid-Atlantic Ridge (MAR) has been performed using the equilibrium-thermodynamic approach to study samples from these sites. In the first case, a sphalerite-pyrite-barite association was considered, and in the second case, a sphalerite-pyrite association. In the modeling conducted, the composition of the sphalerite solid solution corresponding to the nonideal mixing of ZnS and FeS was used as a correlation parameter with the total composition of the Fe-Zn-Ba-S-H2O-NaCl-HCl hydrothermal system depending on temperature (200-300 °C) and a given pressure of 100 bar. The calculation results predict that at an iron content of 0.17-0.36 wt.% in sphalerite, the minimum formation temperatures of the equilibrium sphalerite-pyrite-barite association should correspond to the interval of 280-300 °C (Krasnov site). As the iron content in sphalerite increases to 4.15-13.28 wt.%, the occurrence of barite in the systems studied becomes impossible and the formation temperatures of the sphalerite-pyrite association become equal to or higher than 300 °C (Ashadze site).  相似文献   

16.
The Kozbudaklar scheelite skarn deposit in the Tavşanlı Zone, located approximately 22 km southeast of Bursa, is hosted by the Triassic calcic İnönü Marble and Eocene Topuk Pluton. At least four stages have been recognized through skarn evolution. Scheelite skarn distributed close to the Topuk Pluton occurred during the early (stage 1) and late (stage 2) prograde substages. The early prograde endo and exoskarn are composed of hedenbergite (Hd96Joh4)–plagioclase (An55–64) and hedenbergite (Hd61–94Joh4–7), accompanied by calcic garnet (Grs38–94Sps1–5Alm0) and scheelite (Pow1–6). The second stage represents a relatively oxidized mineralogy dominated by diopside (Hd16–48Joh0–9), subcalcic garnet (Grs24–92Sps0–11Alm0–31) and scheelite (Pow7–32). The stage 3 and 4 mineral assemblages are characterized by few hydrous minerals in the retrograde stage and intense fracturing.Fluid inclusions from skarn rocks are indicative of multiple fluid events: (1) low-moderate salinity (5–16 wt.%NaCl equiv.) inclusions homogenized dominantly by a high-temperature (308 °C to > 600 °C) liquid phase in stage 1. Fluid inclusions in an early garnet homogenized over a similar temperature range (440 °C and 459 °C) into both liquid and vapor phases. Eutectic temperatures ranging from − 61.7 °C to − 35.0 °C that indicate the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (2) coexisting daughter mineral-bearing high salinity (29.5  70 wt.%NaCl equiv.) and vapor-rich moderate salinity (11.5–16.7 wt.%NaCl equiv.) inclusions that homogenized in the liquid phase by the disappearance of the vapor phase at a similar temperature range (308 °C to > 600 °C) in stage 2. Eutectic temperatures range from − 67.9°C to − 51.8°C that shows the presence of H2O–NaCl–CO2–(± CH4/N2) solutions; (3) low-moderate salinity (12.5–7.6 wt.%NaCl equiv.) and temperature (320 °C to 215 °C) inclusions homogenized by the liquid phase in stage 3. Eutectic temperatures range from − 59.5 °C to − 44.2 °C indicating the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (4) inclusions of low salinity (9.9–0.9 wt.%NaCl equiv.) and homogenization temperature (183 °C to 101 °C) in stage 4.These data show that the Kozbudaklar skarn deposit was formed in a magmatic–hydrothermal system. In this model, carbonaceous fluids may have been exsolved from the plutonic rock during its emplacement and crystallization. Fluid inclusion data indicate that fluid boiling and immiscibility occurred at temperatures between 440 °C and 459 °C and pressures ranging from 50 MPa to 60 MPa based on hydrostatic considerations. Early scheelite was precipitated with relatively reduced mineral compositions. As a result of depressurization, Mo-rich scheelite with oxidized minerals formed via high salinity and vapor-rich inclusions. The second scheelite mineralization occurred in a normal hydrothermal system by an infiltration mechanism at pressures between approximately 40 and 1.5 MPa. At shallow depths (< 1.5 MPa) with increasing permeability, sulfide and oxide minerals were deposited in the retrograde stage, greatly assisted by meteoric water. Finally, as a result of the diminishing of ore-forming fluids, post-depositional barren quartz and calcite veins were formed.  相似文献   

17.
《Quaternary Science Reviews》2007,26(13-14):1695-1712
The impact of the 8.2 ka cooling event during the Early–Mid Holocene has not been widely observed in Southern Europe, which in contrast to Northern Europe, was already experiencing a cooler than present climate at this time. Multi-proxy analysis of sediment cores from two closed-basin saline lakes in the Central Ebro Desert (NE Spain) has allowed us to investigate the impact of climatic changes around the time of this event in more detail. Long-term changes in climate between the Early and Mid Holocene indicate a shift in winter to a more positive NAO, resulting in declining lake levels in one lake sensitive to winter groundwater recharge, and cooler winter temperatures reconstructed from pollen–climate analysis. Reconstructed summer temperatures also declined over this period while annual precipitation and forest cover increased, interpreted as a result of enhanced convection-driven summer precipitation association with a northward displacement of the sub-tropical high pressure. Around 8.2 ka, a marked increase in fire frequency is shown between ca 8.8 and 8.0 ka BP, along with an expansion of fire-tolerant evergreen oak and peak in water levels in a second storm run-off fed lake. A maximum in fire intensity occurred with the deposition of a charcoal layer at both lake sites dated to 8150±130 and 8285±135 cal BP, respectively. The increase in fire is largely attributed to a temporary return southward of the summer sub-tropical high pressure over the Mediterranean, which not only increased summer aridity, but also caused a contradictory regional warming before Hemispheric cooling set in.  相似文献   

18.
In study of plagioclases, amphiboles, and melt inclusions, we have determined the physicochemical parameters of crystallization of melts in the intermediate suprasubduction chambers of volcanoes representing different types of subduction magmatism on the Kamchatka Peninsula: the young basaltic systems of Tolbachik Volcano (Klyuchevskaya group) and ancient Ichinskii Volcano (Sredinnyi Ridge) with alternating basaltic and felsic eruptions. For Tolbachik Volcano, we have found that plagioclase lapilli formed from basaltic melts at 1075-1115 °C and low (< 1 kbar) pressures at depths of 2-3 km. Andesite minerals crystallized within a wider range of temperatures and pressures (1220-1020 °C and 3.3-1.6 kbar) in an intermediate chamber at depths of < 10 km. The melts were generated in basaltic magma chambers (detected well by geophysical methods at depths of 18-20 km) with minimum temperatures of ~ 1290 °C. For Ichinskii Volcano, three levels of intermediate chambers are distinguished. Andesites formed at depths of < 23 km at < 1225 °C. Dacitic melts were generated from an intermediate chamber (14 km) at 1135-1045 °C as a result of differentiation of andesitic magmas. Dacites formed in the uppermost horizons (9-3 km) at 1130-1030 °C. Despite the similarity between differentiation processes in the intermediate chambers of the Kamchatka volcanoes, each volcano is characterized by specific magmatism. The lavas of basaltic volcanoes (Tolbachik) and those of andesitic volcanoes (Ichinskii) differ in genesis and differentiation.  相似文献   

19.
《Quaternary Science Reviews》2007,26(5-6):793-807
The environmental history of a talus-derived rockglacier located in northern Norway has been reconstructed through the Last Glacial–Interglacial transition based on two cores retrieved from an adjacent lake. The methods used to quantify sedimentary properties include rock magnetism, grain size analyses, loss-on-ignition (LOI) and bulk density, which when combined has enabled an unmixing of the various sediment components and their corresponding sources. Rockglaciers signify mean annual air temperatures (MAAT) of −4 °C or colder, but little is known about their dynamical response to changing thermal regimes. We document here for the first time that a permafrost regime did exist in northern Norway during the lateglacial period, and that it required a lowering equivalent of at least 7 °C compared to present-day MAAT. The lake sediments suggest that the rockglacier existed prior to the local deglaciation of the Fennoscandian Ice Sheet (>14 800 cal yr BP), and continued its expansion until the end of the Younger Dryas whereupon it became fossil. The cool climate of the lateglacial was intersected by brief warming spells that caused a systematic release of sedimentladen meltwater from the rockglacier. During the Holocene the minerogenic influx to the lake was driven by spring snowmelting, which are related to the magnitude of winter precipitation. Three phases are recognised: (1) 9800–6500 cal yr BP when wet winters prevailed, (2) 6500–4000 cal yr BP with dry winters, and (3) the last 4000 cal yr BP with a return to wetter winters.  相似文献   

20.
The Shapinggou porphyry Mo deposit, one of the largest Mo deposits in Asia, is located in the Dabie Orogen, Central China. Hydrothermal alteration and mineralization at Shapinggou can be divided into four stages, i.e., stage 1 ore-barren quartz veins with intense silicification, followed by stage 2 quartz-molybdenite veins associated with potassic alteration, stage 3 quartz-polymetallic sulfide veins related to phyllic alteration, and stage 4 ore-barren quartz ± calcite ± pyrite veins with weak propylitization. Hydrothermal quartz mainly contains three types of fluid inclusions, namely, two-phase liquid-rich (type I), two- or three-phase gas-rich CO2-bearing (type II) and halite-bearing (type III) inclusions. The last two types of fluid inclusions are absent in stages 1 and 4. Type I inclusions in the silicic zone (stage 1) display homogenization temperatures of 340 to 550 °C, with salinities of 7.9–16.9 wt.% NaCl equivalent. Type II and coexisting type III inclusions in the potassic zone (stage 2), which hosts the main Mo orebodies, have homogenization temperatures of 240–440 °C and 240–450 °C, with salinities of 34.1–50.9 and 0.1–7.4 wt.% NaCl equivalent, respectively. Type II and coexisting type III inclusions in the phyllic zone (stage 3) display homogenization temperatures of 250–345 °C and 220–315 °C, with salinities of 0.2–6.5 and 32.9–39.3 wt.% NaCl equivalent, respectively. Type I inclusions in the propylitization zone (stage 4) display homogenization temperatures of 170 to 330 °C, with salinities lower than 6.5 wt.% NaCl equivalent. The abundant CO2-rich and coexisting halite-bearing fluid inclusion assemblages in the potassic and phyllic zones highlight the significance of intensive fluid boiling of a NaCl–CO2–H2O system in deep environments (up to 2.3 kbar) for giant porphyry Mo mineralization. Hydrogen and oxygen isotopic compositions indicate that ore-fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials at Shapinggou are magmatic in origin. Re–Os dating of molybdenite gives a well-defined 187Re/187Os isochron with an age of 112.7 ± 1.8 Ma, suggesting a post-collisional setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号