首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time-splitting approach for advection–dispersion equations is considered. The dispersive and advective fluxes are split into two separate partial differential equations (PDEs), one containing the dispersive term and the other one the advective term. On triangular elements a triangle-based high resolution Finite Volume (FV) scheme for advection is combined with a Mixed Hybrid Finite Element (MHFE) technique to solve dispersion. This approach introduces an error proportional to the time step and the overall scheme is only first order accurate if special care is not taken in the definition of the numerical flux approximation for advection. By incorporating the diffusive effects into the definition of this numerical flux, near second order accuracy (up to a logh factor) can be proved theoretically and validated by numerical experiments in both one- and two-dimensional cases.  相似文献   

2.
We present a general compositional formulation using multi-point flux mixed finite element (MFMFE) method on general hexahedral grids. The mixed finite element framework allows for local mass conservation, accurate flux approximation, and a more general treatment of boundary conditions. The multi-point flux inherent in MFMFE scheme allows the usage of a full permeability tensor. The proposed formulation is an extension of single and two-phase flow formulations presented by Wheeler and Yotov, SIAM J. Numer. Anal. 44(5), 2082–2106 (35) with similar convergence properties. Furthermore, the formulation allows for black oil, single-phase and multi-phase incompressible, slightly and fully compressible flow models utilizing the same design for different fluid systems. An accurate treatment of diffusive/dispersive fluxes owing to additional velocity degrees of freedom is also presented. The applications areas of interest include gas flooding, CO 2 sequestration, contaminant removal, and groundwater remediation.  相似文献   

3.
Dissolution rates of limestone covered by a water film open to a CO2-containing atmosphere are controlled by the chemical composition of the CaCO3-H2O-CO2 solution at the water-mineral interface. This composition is determined by the Ca2+-concentration at this boundary, conversion of CO2 into H+ and in the solution, and by diffusional mass transport of the dissolved species from and towards the water-limestone interface. A system of coupled diffusion-reaction equations for Ca2+, , and CO2 is derived. The Ca2+ flux rates at the surface of the mineral are defined by the PWP-empirical rate law. These flux rates by the rules of stoichiometry must be equal to the flux rates of CO2 across the air-water interface. In the solution, CO2 is converted into H+ and . At low water-film thickness this reaction becomes rate limiting. The time dependent diffusion-reaction equations are solved for free drift dissolution by a finite-difference scheme, to obtain the dissolution rate of calcite as a function of the average calcium concentration in the water film. Dissolution rates are obtained for high undersaturation. The results reveal two regimes of linear dissolution kinetics, which can be described by a rate law F = αi(miceq − c), where c is the calcium concentration in the water film, ceq the equilibrium concentration with respect to calcite. For index i = 0, a fast rate law, which here is reported for the first time, is found with α0 = 3 × 10−6 m s−1 and m0 = 0.3. For c > m0ceq, a slow rate law is valid with α1 = 3 × 10−7 m  s−1 and m1 = 1, which confirms earlier work. The numbers given above are valid for film thickness of several tenths of a millimetre and at 20 °C. These rates are proven experimentally, using a flat inclined limestone plate covered by a laminar flowing water film injected at an input point with known flow rate Q and calcium concentration. From the concentration measured after flow distance x the dissolution rates are determined. These experiments have been performed at a carbon-dioxide pressure of 0.00035 atm and also of 0.01 atm. The results are in good agreement to the theoretical predictions.  相似文献   

4.
The numerical error associated with finite-difference simulation of wave propagation in discontinuous media consists of two components. The first component is a higher-order error that leads to grid dispersion; it can be controlled by higher-order methods. The second component results from misalignment between numerical grids and material interfaces. We provide an explicit estimate of the interface misalignment error for the second order in time and space staggered finite-difference scheme applied to the acoustic wave equation. Our analysis, confirmed by numerical experiments, demonstrates that the interface error results in a first-order time shift proportional to the distance between the interface and computational grids. A 2D experiment shows that the interface error cannot be suppressed by higher-order methods and indicates that our 1D analysis gives a good prediction about the behavior of the numerical solution in higher dimensions.   相似文献   

5.
Accurate sea surface temperature (SST) proxies are important for understanding past ocean and climate systems. Here, we examine material collected from a deep-moored sediment trap in the Mozambique Channel (SW Indian Ocean) to constrain and compare both inorganic (δ18O, Mg/Ca) and organic (, TEX86) temperature proxies in a highly dynamic oceanographic setting for application in paleoceanography. High-resolution time-series current velocity data from long-term moorings (2003 - present) deployed across the Mozambique Channel reveal the periodic migration of four to six meso-scale eddies through the channel per year. These meso-scale eddies strongly influence water mass properties including temperature and salinity. Despite the dynamic oceanographic setting, fluxes of the surface-dwelling planktonic foraminifera Globigerinoidesruber and Globigerinoides trilobus follow a seasonal pattern. Temperatures reconstructed from G. ruber and G. trilobus δ18O and Mg/Ca closely mirror seasonal SST variability and their flux-weighted annual mean SSTs of 28.1 °C and 27.3 °C are in close agreement with annual mean satellite SST (27.6 °C). The sub-surface dwelling foraminifera Neogloboquadrina dutertrei and Globigerinoides scitula recorded high-frequency temperature variations that, on average, reflect conditions at water depths of 50-70 m and 200-250 m, respectively. Concentrations and fluxes of organic compounds (alkenones and crenarchaeol) display no or only moderate seasonality but flux weighted means of the associated temperature signatures, , and of 28.3 °C and 28.1 °C, respectively, also closely reflect mean annual SST. We analyzed all time-series data using multiple statistical approaches including cross-correlation and spectral analysis. Eddy variability was clearly expressed in the statistical analysis of physical oceanographic parameters (current velocity and sub-surface temperature) and revealed a frequency of four to six cycles per year. In contrast, statistical analysis of proxy data from the sediment trap did not reveal a significant coupling between eddy migration and organic compound fluxes or reconstructed temperatures. This is likely a result of the relatively low resolution (21 days) and short (2.5 years) duration of the time series, which is close to the detection limit of the eddy frequency.  相似文献   

6.
Research concerning the fate and biogeochemical cycling of mercury (Hg) within coastal ecosystems has suggested that microbially mediated diagenetic processes control Hg mobilization and that ligands with strong affinity for Hg, such as dissolved inorganic sulfide (S(-II)) and dissolved organic matter (DOM), control Hg partitioning between the dissolved and particulate phases. We have studied total Hg cycling in the sediments of the Penobscot River estuary using a combination of equilibrium porewater samplers and kinetic modeling. The Penobscot estuary has been subject to Hg contamination from multiple industries including a recently closed chlor-alkali production facility. The Hg concentration within the estuary surface sediments ranges from 1.25 to 27.5 nmol Hg g−1 sediment and displays an association with sediment organic matter and a concentration maximum within 3 cm of the sediment-water interface (SWI). Porewater profiles for the Penobscot estuary are divisible into three kinetically discrete intervals with respect to Hg dynamics. Beginning at depth in the sediment and moving upward toward the SWI we have defined: (1) a zone of net Hg solubilization at depth, with a zero-order net Hg production rate , (2) a zone of net Hg consumption within the zone dominated by FeS(s) precipitation with , and (3) a zone of net diffusive transfer within the vicinity of the SWI. Zone 1 is characterized by dissolved S(-II) concentrations ranging from 400 to 500 μM. Equilibrium modeling in this zone suggests that inorganic S(-II) plays the dominant role in both mobilization of sediment-bound Hg and complexation of dissolved Hg. In zone 2, FeS(s) precipitation occurs concomitant with Hg consumption. Net transfer within zone 3 is consistent with the potential for ligand-mediated Hg efflux across the SWI. S(-II)-mediated Hg mobilization at depth in Penobscot estuary sediments suggests a broadening of the depth interval over which biogeochemical Hg cycling must be examined. Our results also show that, while estuary sediments act as a net sink for particulate Hg inputs, they may also function for a considerable time interval as a source of dissolved Hg.  相似文献   

7.
We present a new nonlinear monotone finite volume method for diffusion equation and its application to two-phase flow model. We consider full anisotropic discontinuous diffusion or permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which provides the conventional seven-point stencil for the discrete diffusion operator on cubic meshes. We show that the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water breakthrough time. We compare two two-point flux approximations (TPFA), the proposed nonlinear TPFA and the conventional linear TPFA, and multipoint flux approximation (MPFA). The new nonlinear scheme has a number of important advantages over the traditional linear discretizations. Compared to the linear TPFA, the nonlinear TPFA demonstrates low sensitivity to grid distortions and provides appropriate approximation in case of full anisotropic permeability tensor. For nonorthogonal grids or full anisotropic permeability tensors, the conventional linear TPFA provides no approximation, while the nonlinear flux is still first-order accurate. The computational work for the new method is higher than the one for the conventional TPFA, yet it is rather competitive. Compared to MPFA, the new scheme provides sparser algebraic systems and thus is less computational expensive. Moreover, it is monotone which means that the discrete solution preserves the nonnegativity of the differential solution.  相似文献   

8.
We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.  相似文献   

9.
Long chain alkenones (LCA) are temperature-sensitive lipids with great potential for quantitative reconstruction of past continental climate. We conducted the first survey for alkenone biomarkers from 55 different lakes in the Northern Great Plains and Nebraska Sand Hills of the United States. Among those surveyed, we found 13 lakes that contain LCAs in the surface sediments. The highest concentrations of alkenones in sediments are found in cold (mean annual air temperature ∼11 °C versus 17 °C in our warmest sites), brackish to mesosaline (salinity = 8.5-9.7 g/L), and alkaline (pH = 8.4-9.0) lakes with high concentrations of sodium and sulfate. The dynamics of stratification and nutrient availability also appear to play a role in LCA abundance, as early spring mixing promotes a bloom of alkenone-producing haptophytes. Four of the alkenone-containing sites contain the C37:4 alkenone; however, we discovered an unprecedented lacustrine alkenone distribution in a cluster of lakes, with a total absence of C37:4 alkenone. We attribute this unusual composition to a different haptophyte species and show that the sulfate:carbonate ratio may control the occurrence of these two distinct populations. We created a new in-situ temperature calibration for lacustrine sites that contain C37:4 using a water-column calibration from Lake George, ND and show that is linearly correlated to lake water temperature (R2 = 0.74), but is not. A number of lakes contain an unidentified compound series that elutes close to the LCAs, highlighting the importance of routine GC-MS examination prior to using lacustrine LCAs for paleotemperature reconstructions.  相似文献   

10.
In order to quantify possible fractionation of U and Pb into a metallic core, we have performed piston cylinder and multi-anvil press experiments at high pressure (up to 20 GPa) and high temperature (up to 2400 °C) and obtained the distribution coefficient Dmetal-silicate and the exchange partition coefficient Kmetal-silicate for these elements between metal and silicates (mineral or liquid). and depend strongly on the S content of the metallic phase, and also on the oxygen fugacity, in agreement with an effective valence state of 4 for U in silicates and 2 for Pb in silicates. and show no discernable pressure and temperature trend. U remains lithophile even at high pressure and high temperature but its lithophile nature decreases at very low oxygen fugacity. From our experimental data, it was possible to calculate the U and Pb contents of the cores of Mars and Earth under core-mantle equilibrium conditions at high pressure and high temperature. From the Dmetal-silicate of the present study, we obtained that: 0.008 ppm < Pbin the core <4.4 ppm, and 0.0003 ppb < Uin the core < 0.63 ppb, depending on whether the metal is S-free or S-saturated respectively, and if the mantle was molten or solid during the segregation process of the Earth’s core around ΔIW-2. For Mars, based on a core segregation process around ΔIW-1, we obtained that: 0.005 ppm < Pbin the core < 3 ppm, and 0.00002 ppb < Uin the core < 0.05 ppb, depending on the metallic composition: S-free or S-saturated respectively.Our results suggest that the low concentration of Pb in the terrestrial mantle could not be explained by an early Pb sequestration in the Earth’s core even if S is the dominant light element of the core. If we assume a magma ocean scenario, U might produced a maximum value of 1.5% of the total heat budget of the core with a segregation occurring below ΔIW-3. The values found in the present study for U in the Martian core suggest that the magnetic field activity of Mars before ∼0.5 b.y. after its formation would be difficult to ascribe to the decay of U alone.  相似文献   

11.
12.
Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0-20 cm below sea floor [cmbsf]) aqueous (<0.02 μm) and aqueous + colloidal here in after ‘dissolved’ (<0.2 μm) pore water Fe and Mn distributions, and ancillary O2(aq), and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous-volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 μM Fe; 32 μM Mn), with maxima (20 μM Fe; 200 μM Mn) in the upper 1-15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 μm and 0.02 μm filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region.  相似文献   

13.
14.
Hexagonal birnessite (δ-MnO2) is a close analogue to the dominant phase in hydrogenetic marine ferromanganese crusts and nodules. These deposits contain ∼0.25 wt.% Cu which is believed to be scavenged from the overlying water column where Cu concentrations are near 0.1 μg/L. Here, we measured the sorption of Cu on δ-MnO2 as a function of pH and surface loading. We characterized the nature of the Cu sorption complex at pH 4 and 8 using EXAFS spectroscopy and find that, at pH 4, Cu sorbs to birnessite by inner-sphere complexation on the {0 0 1} surface at sites above Mn vacancies to give a three to fourfold coordinated complex with 6 Mn neighbors at ∼3.4 Å. At pH 8, however, we find that some Cu has become structurally incorporated into the MnO2 layer by occupying the vacancy sites to give 6 Mn neighbors at ∼2.91 Å. Density functional calculations on and clusters predict a threefold coordinated surface complex and show that the change from surface complexation to structural incorporation is a response to protonation of oxygens surrounding the vacancy site. Consequently, we propose that the transformation between sorption via surface complex and vacancy site occupancy should be reversible. By fitting the Cu sorption as a function of surface loading and pH to the formation of the observed and predicted surface complex, we developed a surface complexation model (in the basic Stern approximation) for the sorption of Cu onto birnessite. Using this model, we demonstrate that the concentration of inorganic Cu in the deep ocean should be several orders of magnitude lower than the observed total dissolved Cu. We propose that the observed total dissolved Cu concentration in the oceans reflects solubilization of Cu by microbially generated ligands.  相似文献   

15.
Nitrogen contents and isotope compositions together with major and trace element concentrations were determined in a sequence of metagabbros from the western Alps (Europe) in order to constrain the evolution and behavior of N during hydrothermal alteration on the seafloor and progressive dehydration during subduction in a cold slab environment (8 °C/km). The rocks investigated include: (i) low-strain metagabbros that equilibrated under greenschist to amphibolite facies (Chenaillet Massif), blueschist facies (Queyras region) and eclogite facies (Monviso massif) conditions and (ii) highly-strained mylonites and associated eclogitic veins from the Monviso Massif. In all samples, nitrogen (2.6-55 ppm) occurs as bound ammonium () substituting for K or Na-Ca in minerals. Cu concentrations show a large variation, from 73.2 to 6.4 ppm, and are used as an index of hydrothermal alteration on the seafloor because of Cu fluid-mobility at relatively high temperature (>300 °C). In low-strain metagabbros, δ15N values of +0.8‰ to +8.1‰ are negatively correlated with Cu concentrations. Eclogitic mylonites and veins display Cu concentrations lower than 11 ppm and show a δ15N-Cu relationship that does not match the δ15N-Cu correlation found in low-strain rocks. This δ15N-Cu correlation preserved in low-strain rocks is best interpreted by leaching of Cu-N compounds, possibly of the form Cu(NH3)22+, during hydrothermal alteration. Recognition that the different types of low-strain metagabbros show the same δ15N-Cu correlation indicates that fluid release during subduction zone metamorphism did not modify the original N and Cu contents of the parent hydrothermally-altered metagabbros. In contrast, the low Cu content present in eclogitic veins and mylonites implies that ductile deformation and veining were accompanied either by a loss of copper or that externally-derived nitrogen was added to the system.We estimate the global annual flux of N subducted by metagabbros as 4.2 (±2.0) × 1011 g/yr. This value is about half that of sedimentary rocks, which suggests that gabbros carry a significant portion of the subducted nitrogen. The net budget between subducted N and that outgassed at volcanic arcs indicates that ∼80% of the subducted N is not recycled to the surface. On a global scale, the total amount of N buried to the mantle via subduction zones is estimated to be three times higher than that released from the mantle via mid-ocean ridges, arc and intraplate volcanoes and back-arc basins. This implies that N contained in Earth surface reservoirs, mainly in the atmosphere, is progressively transferred and sequestered into the mantle, with a net flux of ∼9.6 × 1011 g/yr. Assuming a constant flux of subducted N over the Earth’s history indicates that an amount equivalent to the present atmospheric N may have been sequestered into the silicate Earth over a period of 4 billion years.  相似文献   

16.
Porphyry-type ore deposits sometimes contain fluid inclusion compositions consistent with the partitioning of copper and gold into vapor relative to coexisting brine at the depositional stage. However, this has not been reproduced experimentally at magmatic conditions. In an attempt to determine the conditions under which copper and gold may partition preferentially into vapor relative to brine at temperatures above the solidus of granitic magmas, we performed experiments at 800 °C, 100 MPa, oxygen fugacity () buffered by Ni-NiO, and fixed at either 3.5 × 10−2 by using intermediate solid solution-pyrrhotite, or 1.2 × 10−4 by using intermediate solid solution-pyrrhotite-bornite. The coexisting vapor (∼3 wt.% NaCl eq.) and brine (∼68 wt.% NaCl eq.) were composed initially of NaCl + KCl + HCl + H2O, with starting HCl set to <1000 μg/g in the aqueous mixture. Synthetic vapor and brine fluid inclusions were trapped at run conditions and subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Our experiments demonstrate that copper and gold partitioned strongly into the magmatic volatile phase(s) (MVP) (i.e., vapor or brine) relative to a silicate melt over the entire imposed range of . Nernst style partition coefficients between coexisting brine (b) and melt (m), Db/m (±1σ), range from 3.6(±2.2) × 101 to 4(±2) × 102 for copper and from 1.2(±0.6) × 102 to 2.4(±2.4) × 103 for gold. Partition coefficients between coexisting vapor (v) and melt, Dv/m range from 2.1 ± 0.7 to 18 ± 5 and 7(±3) × 101 to 1.6(±1.6) × 102 for copper and gold, respectively. Partition coefficients for all experiments between coexisting brine and vapor, Db/v (±1σ), range from 7(±2) to 1.0(±0.4) × 102 and 1.7(±0.2) to 15(±2) for copper and gold, respectively. Observed average Db/v at an of 1.2 × 10−4 were elevated, 95(±5) and 15 ± 1 for copper and gold, respectively, relative to those at the higher of 3.5 × 10−2 where Db/v were 10(±5) for copper and 7(±6) for gold. Thus, there is an inverse relationship between the and the Db/v for both copper and gold with increasing resulting in a decrease in the Db/v signifying increased importance of the vapor phase for copper and gold transport. This suggests that copper and gold may complex with volatile S-species as well as Cl-species at magmatic conditions, however, none of the experiments of our study at 800 °C and 100 MPa had a Db/v ? 1. We did not directly determine speciation, but infer the existence of some metal-sulfur complexes based on the reported data. We suggest that copper and gold partition preferentially into the brine in most instances at or above the wet solidus. However, in most systems, the mass of vapor is greater than the mass of brine, and vapor transport of copper and gold may become more important in the magmatic environment at higher , lower , or near the critical point in a salt-water system. A Db/v ? 1 at subsolidus hydrothermal conditions may also occur in response to changes in temperature, , , and/or acidity.Additionally, both copper and gold were observed to partition into intermediate solid solution and bornite much more strongly than into vapor, brine or silicate melt. This suggests that, although vapor and brine are both efficient at removing copper and gold from a silicate melt, the presence of Cu-Fe sulfides can sequester a substantial portion of the copper and gold contained within a silicate melt if the Cu-Fe sulfides are abundant.  相似文献   

17.
Carbon occluded in the soil gibbsite crystal structure at the Panola Mountain Research Watershed, Georgia, U.S. is presumed to be in isotopic equilibrium with the CO2 respired from soil organics by microbes and plant roots. Fitting of the stable carbon isotopic data to a Fickian diffusion-based depth function results in an estimate of 47 gC m−2 y−1 for the long-term soil respiration rate. A numerical model that includes depth-dependent production and diffusion terms results in estimates of 28-12 gC m−2 y−1. These values range from 15 to 50 times less than the average of modern values for mixed deciduous forests in wet temperate climates. This disparity has several implications for our understanding of the geologic record of climate change, which include: (1) evidence for a cooler and seasonally drier climate during the mid-Holocene in the southeastern U.S., or (2) fluxes of carbon from the soil pool as recorded by soil mineral proxies (i.e., long-term soil respiration rates) under estimate atmosphere annual carbon flux measurements (i.e., short-term measures), and (3) the need to refine soil respiration models used to relate paleosol stable carbon isotopic measurements to paleo-atmospheric estimates.  相似文献   

18.
Structures, stabilities and vibrational spectra have been calculated using molecular quantum mechanical methods for As(OH)3, AsO(OH)3, As(SH)3, AsS(SH)3 and their conjugate bases and for several species with partial substitution of S for O. Properties for the neutral gas-phase molecules are calculated with state-of-the-art methods which yield AsL distances within 0. 01 Å and AsL stretching frequencies within 10 cm−1 of experiment. Similar accuracy is obtained for neutral molecules in solution using a polarizable continuum model (PCM). For monoanions such as and frequencies can be calculated to within 20 cm−1 of experiment using the polarizable continuum model. Multiply charged anions remain a challenge for accurate frequency calculations, but we have obtained results within the PCM model which at least semiquantitatively reproduce the available data. This allows us to assign the controversial features D, E and F in the Raman data of (Wood S. A., Tait C. D. and Janecky D. R. (2002) A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 °C. Geochem. Trans. 3, 31-39).To help in the assignment of the arsenic sulfide spectra we have also calculated energetics for the oxidation of As(III) to As(V) compounds by polysulfides, disproportionation of As(III) compounds and for the dissociation of the oxo- and thio-acids. We have determined that As(III) oxyacids can be transformed to thioacids which can in turn be oxidized to As(V) sulfides by polysulfides and that the pKa1s of the acids involved can be ordered as follows: AsS(SH)3 < As(SH)3 < AsO(OH)3 < As(OH)3 in order of increasing pKa1. We have also established from the calculated energies that the most stable form of the As(III) oxyacid in acidic aqueous solution is indeed As(OH)3, consistent with previous assignments.  相似文献   

19.
The partitioning of silver in a sulfur-free rhyolite melt-vapor-brine assemblage has been quantified at 800 °C, pressures of 100 and 140 MPa and fO2≈NNO (nickel-nickel oxide). Silver solubility (±2σ) in rhyolite increases 5-fold from 105 ± 21 to 675 ± 98 μg/g as pressure increases from 100 to 140 MPa. Nernst-type partition coefficients describing the mass transfer of silver at 100 MPa between vapor and melt, brine and melt and vapor and brine are 32 ± 30, 1151 ± 238 and 0.026 ± 0.004, respectively. At 140 MPa, values for for vapor and melt, brine and melt, and vapor and brine are 32 ± 10, 413 ± 172 and 0.06 ± 0.03, respectively. Apparent equilibrium constant values (±2σ) describing the exchange of silver and sodium between vapor and melt, , at 100 and 140 MPa are 105 ± 68 and 14 ± 6. The average values (±2σ) for silver and sodium exchange between brine and melt, , at 100 and 140 MPa are 313 ± 288 and 65 ± 12. These data indicate that the mass transfer of silver from rhyolite melt to an exsolved volatile phase(s) is enhanced at 100 MPa relative to 140 MPa, suggesting that decompression increases the silver ore-generative potential of an evolving silicate magma. Model calculations using the new data suggest that the evolution of low-density, aqueous fluid (i.e., vapor) may be responsible for the the silver tonnage of many porphyry-type and perhaps epithermal-type ore deposits. For example, Halter et al. (Halter W. E., Pettke T. and Heinrich C. A. (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science296, 1842-1844) used detailed silicate and sulfide melt inclusion and vapor and brine fluid inclusions analyses to estimate a melt volume on the order of 15 km3 to satisfy the copper budget at the Bajo de la Alumbrera copper-, gold-, silver-ore deposit. Using their melt volume estimate with the data presented here, model calculations for a 15-km3 felsic melt, saturated with pyrrhotite and magnetite, suggest that a low-salinity magmatic vapor may scavenge on the order of 7 × 1012 g of silver from the melt. This quantity of silver exceeds the discovered 2 × 109 g of Ag at Alumbrera. Calculated tonnages for numerous other deposits yield similar results. The excess silver in the vapor, remaining after porphyry formation, is then available to precipitate at lower PTconditions in the stratigraphically higher epithermal environment. These data suggest that silver, and perhaps other ore metals, in the porphyry-epithermal continuum may be derived solely from the time-integrated flux of dominantly low-salinity vapor exsolved from a series of sequential magma batches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号