首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We analyse a sample of 32 galaxies for which a dynamical estimate of the mass of the hot stellar component, M bulge, is available. For each of these galaxies, we calculate the mass of the central black hole, M , using the tight empirical correlation between M and bulge stellar velocity dispersion. The frequency function     is reasonably well described as a Gaussian with     and standard deviation ∼0.45; the implied mean ratio of black hole mass to bulge mass is a factor of ∼5 smaller than generally quoted in the literature. We present marginal evidence for a lower, average black hole mass fraction in more massive galaxies. The total mass density in black holes in the local Universe is estimated to be ∼     consistent with that inferred from high-redshift     active galactic nuclei.  相似文献   

2.
Stellar-mass black holes (BHs) are expected to segregate and form a steep density cusp around supermassive black holes (SMBHs) in galactic nuclei. We follow the evolution of a multimass system of BHs and stars by numerically integrating the Fokker–Planck energy diffusion equations for a variety of BH mass distributions. We find that the BHs 'self-segregate', and that the rarest, most massive BHs dominate the scattering rate closest to the SMBH  (≲10−1 pc)  . BH–BH binaries form out of gravitational wave emission during BH encounters. We find that the expected rate of BH coalescence events detectable by Advanced LIGO is  ∼1–102 yr−1  , depending on the initial mass function of stars in galactic nuclei and the mass of the most massive BHs. We find that the actual merger rate is likely ∼10 times larger than this due to the intrinsic scatter of stellar densities in many different galaxies. The BH binaries that form this way in galactic nuclei have significant eccentricities as they enter the LIGO band (90 per cent with   e > 0.9  ), and are therefore distinguishable from other binaries, which circularize before becoming detectable. We also show that eccentric mergers can be detected to larger distances and greater BH masses than circular mergers, up to  ∼700 M  . Future ground-based gravitational wave observatories will be able to constrain both the mass function of BHs and stars in galactic nuclei.  相似文献   

3.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

4.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

5.
We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas-rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disc and a spherical dark halo. The starburst is assumed to occur in a small volume in the centre of the galaxy, and it generates a mechanical power of 3.8×1039 or 3.8×1040 erg s−1 for 30 Myr. We find, in accordance with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal-rich stellar ejecta, however, can be efficiently expelled from the galaxy and dispersed in the intergalactic medium.
Moreover, we find that the central region of the galaxy is always replenished with cold and dense gas a few 100 million years after the starburst, achieving the requisite for a new star formation event in ≈0.5–1 Gyr. The hydrodynamical evolution of galactic winds is thus consistent with the episodic star formation regime suggested by many chemical evolution studies.
We also discuss the X-ray emission of these galaxies and find that the observable (emission-averaged) abundance of the hot gas underestimates the real one if thermal conduction is effective. This could explain the very low hot-gas metallicities estimated in starburst galaxies.  相似文献   

6.
This paper presents a global analysis of the 2MASS (Two Micron All Sky Survey) data as observed in seven fields at different galactic latitudes in our Galaxy. The data allow the preliminary determination of the scale parameters, which lead to strong constraints on the radial and vertical structure of the galactic thin and thick disc. The interpretation of star counts and colour distributions of stars in the near-infrared with the synthetic stellar population model gives strong evidence that the galactic thin disc density scalelength ( h R ) is rather short (2.8±0.3 kpc). The galactic thick disc population is revisited in the light of new data. We find the thick disc to have a local density of 3.5±2.0 per cent of the thin disc, exponential scaleheight ( h z ) of 860±200 pc and exponential scalelength ( h R ) of 3.7±0.50.8 kpc.  相似文献   

7.
The non‐linear dynamics of bending instability and vertical structure of a galactic stellar disc embedded into a spherical halo are studied with N‐body numerical modelling. Development of the bending instability in stellar galactic disc is considered as the main factor that increases the disc thickness. Correlation between the disc vertical scale height and the halo‐to‐disc mass ratio is predicted from the simulations. The method of assessment of the spherical‐to‐disc mass ratio for edge‐on spiral galaxies with a small bulge is considered. Modelling of eight edge‐on galaxies: NGC 891, NGC 4738, NGC 5170, UGC 6080, UGC 7321, UGC 8286, UGC 9422 and UGC 9556 is performed. Parameters of stellar discs, dark haloes and bulges are estimated. The lower limit of the dark‐to‐luminous mass ratio in our galaxies is of the order of one within the limits of their stellar discs. The dark haloes dominate by mass in the galaxies with very thin stellar discs (NGC 5170, UGC 7321 and UGC 8286) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Using a large (14 857), homogenously selected sample of cluster galaxies identified in the Sloan Digital Sky Survey Data Release 4, we investigate the impact of cluster membership and local density on the stellar mass–gas phase metallicity relation (MZR). We show that stellar metallicities are not suitable for this work, being relatively insensitive to subtle changes in the MZR. Accurate nebular abundances can be obtained for 1318 cluster galaxies in our sample and we show that these galaxies are drawn from clusters that are fully representative of the parent sample in terms of mass, size, velocity dispersion and richness. By comparing the MZR of the cluster galaxies with a sample of control galaxies matched in mass, redshift, fibre covering fraction and rest-frame   g − r   colour cluster galaxies are found to have, on average, higher metallicities by up to 0.04 dex. The magnitude of this offset does not depend strongly on galactic half-light radius or cluster properties such as velocity dispersion or cluster mass. The effect of local density on the MZR is investigated, using the presence of a near neighbour and both two- and three-dimensional density estimators. For all three metrics, it is found that the cluster galaxies in locally rich environments have higher median metallicities by up to ∼0.05 dex than those in locally poor environments (or without a near neighbour). Control (non-cluster) galaxies at locally high densities exhibit similar metal enhancements. Taken together, these results show that galaxies in clusters are, on average, slightly more metal rich than the field, but that this effect is driven by local overdensity and not simply cluster membership.  相似文献   

9.
The H  i surface density maps for a sample of 18 galaxies in the Eridanus group are Fourier analysed. This analysis gives the radial variation of the lopsidedness in the H  i spatial distribution. The lopsidedness is quantified by the Fourier amplitude A 1 of the m = 1 component normalized to the average value. It is also shown that in the radial region where the stellar disc and H  i overlap, their A 1 coefficients are comparable. All the galaxies studied show significant lopsidedness in H  i . The mean value of A 1 in the inner regions of the galaxies (1.5–2.5 scalelengths) is ≥ 0.2. This value of A 1 is twice the average value seen in the field galaxies. Also, the lopsidedness is found to be smaller for late-type galaxies; this is opposite to the trend seen in the field galaxies. These two results indicate a different physical origin for disc lopsidedness in galaxies in a group environment compared to the field galaxies. Further, a large fraction (∼30 per cent) shows a higher degree of lopsidedness ( A 1≥ 0.3). It is also seen that the disc lopsidedness increases with the radius as demonstrated in earlier studies, but over a radial range that is two times larger than done in the previous studies. The average lopsidedness of the halo potential is estimated to be ∼10 per cent, assuming that the lopsidedness in H  i disc is due to its response to the halo asymmetry.  相似文献   

10.
We have analysed the distribution of inclination-corrected galaxy concentrations in the Sloan Digital Sky Survey. We find that unlike most galaxy properties, which are distributed bimodally, the distribution of concentrations is trimodal: it exhibits three distinct peaks. The newly discovered intermediate peak, which consists of early-type spirals and lenticulars, may contain ∼60 per cent of the number density and ∼50 per cent of the luminosity density of  0.1 Mr < −17  galaxies in the local universe. These galaxies are generally red and quiescent, although the distribution contains a tail of blue star-forming galaxies and also shows evidence of dust. The intermediate-type galaxies have higher apparent ellipticities than either disc or elliptical galaxies, most likely because some of the face-on intermediate types are misidentified as ellipticals. Their physical half-light radii are smaller than the radii of either the disc or elliptical galaxies, which may be evidence that they form from disc fading. The existence of a distinct peak in parameter space associated with early-type spiral galaxies and lenticulars implies that they have a distinct formation mechanism and are not simply the smooth transition between disc-dominated and spheroid-dominated galaxies.  相似文献   

11.
A rotating disc galaxy is modelled as a composite system consisting of thin stellar and gaseous discs, which are described by a two-fluid modal formalism. The composite disc system is assumed to retain axisymmetry in the background equilibrium. General density-wave perturbations in the two discs are coupled through the mutual gravitational interaction. We study the basic properties of open and tight spiral density-wave modes in such a composite disc system. Within the Lindblad resonances, perturbation enhancements of surface mass density in stellar and gaseous discs are in phase; this is also true during the initial growth phase of density-wave perturbations. Outside the Lindblad resonances, there exists a possible spiral density-wave branch for which perturbation enhancements of surface mass density in stellar and gaseous discs are out of phase. We discuss implications of these results on the critical parameters for global star formation in barred and normal spiral galaxies and on magnetohydrodynamic density waves within the Lindblad resonances.  相似文献   

12.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

13.
There is still no consensus as to what causes galactic discs to become warped. Successful models should account for the frequent occurrence of warps in quite isolated galaxies, their amplitude as well as the observed azimuthal and vertical distributions of the H  i layer. Intergalactic accretion flows and intergalactic magnetic fields may bend the outer parts of spiral galaxies. In this paper we consider the viability of these non-gravitational torques to take the gas off the plane. We show that magnetically generated warps are clearly flawed because they would wrap up into a spiral in less than two or three galactic rotations. The inclusion of any magnetic diffusivity to dilute the wrapping effect causes the amplitude of the warp to damp. We also consider the observational consequences of the accretion of an intergalactic plane-parallel flow at infinity. We have computed the amplitude and warp asymmetry in the accretion model, for a disc embedded in a flattened dark matter halo, including self-consistently the contribution of the modes with azimuthal wavenumbers   m = 0  and   m = 1  . Since the m = 0 component, giving a U-shaped profile, is not negligible compared to the m = 1 component, this model predicts quite asymmetric warps, maximum gas displacements on the two sides in the ratio 3 : 2 for the preferred Galactic parameters, and the presence of a fraction ∼3.5 per cent of U-shaped warps, at least. The azimuthal dependence of the moment transfer by the ram pressure would produce a strong asymmetry in the thickness of the H  i layer and asymmetric density distributions in z , in conflict with observational data for the warp in our Galaxy and in external galaxies. The amount of accretion that is required to explain the Galactic warp would give gas scaleheights in the far outer disc that are too small. We conclude that accretion of a flow with no net angular momentum cannot be the main and only cause of warps.  相似文献   

14.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

15.
Central gravitational image detection is very important for the study of the mass distribution of the inner parts (∼100 pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensitivity Array (HSA) observation of the double-image radio lens system B1030+074. The data are combined with archive Very Long Baseline Array and global very long baseline interferometry (VLBI) observations, and careful consideration is given to the effects of noise, clean ing and self-calibration. An upper limit is derived for the strength of the central image of 180 μJy (90 per cent confidence level), considerably greater than would have been expected on the basis of a simple analysis. This gives a lower limit of ∼103 for the ratio of the brightest image to the central image. For cusped models of lens mass distributions, we have made use of this non-detection to constrain the relation between inner power-law slope β of the lensing galaxy mass profile, and its break radius r b. For   r b > 130 pc  the power-law slope is required to be close to isothermal  (β > 1.8)  . A flatter inner slope is allowed if a massive black hole is present at the centre of the lensing galaxy, but the effect of the black hole is small unless it is ∼10 times more massive than that implied by the relation between black hole mass and stellar velocity dispersion. By comparing four epochs of VLBI observations, we also detected possible superluminal motion in the jet in the brighter image A. The B jet remains unresolved, as expected from a simple lens model of the system.  相似文献   

16.
We present MERLIN and VLA observations at 1.4 and 5 GHz of the diffuse radio emission in the centre of M82. We detect a large expanding shell of ionized gas surrounding the brightest supernova remnant 41.95+57.5 with a diameter of ∼100 pc and an expansion velocity of ∼100 km s−1. We observe a 50-pc-scale 'blow-out' from this region, in the form of a 'cone' of missing 5-GHz continuum emission, which appears to be an excellent example of a galactic chimney.
On larger radio scales, we observe four chimney structures extending out to the north ∼100–200 pc along the minor axis. One of these features is almost certainly related to the 50-pc-scale blow-out from 41.95+57.5, although this is not the most prominent feature. The other features have also been traced to expulsion of material from the very centre by using an 'unsharp masked' image from 5-GHz VLA B-array observations, with the supernova remnant removed.
We interpret these chimney features as the base of the superwind, which implies that the ejection of material into the halo does not occur smoothly over the starburst region. Instead, very localized venting of hot gas is clearly in evidence.  相似文献   

17.
In large spheroidal stellar systems, such as elliptical galaxies, one invariably finds a  106–109 M  supermassive black hole at their centre. In contrast, within dwarf elliptical galaxies one predominantly observes a  105–107 M  nuclear star cluster. To date, few galaxies have been found with both types of nuclei coexisting and even less have had the masses determined for both central components. Here, we identify one dozen galaxies housing nuclear star clusters and supermassive black holes whose masses have been measured. This doubles the known number of such hermaphrodite nuclei – which are expected to be fruitful sources of gravitational radiation. Over the host spheroid (stellar) mass range  108–1011 M  , we find that a galaxy's nucleus-to-spheroid (baryon) mass ratio is not a constant value but decreases from a few per cent to ∼0.3 per cent such that  log[( M BH+ M NC)/ M sph]=−(0.39 ± 0.07) log[ M sph/1010 M]− (2.18 ± 0.07)  . Once dry merging commences and the nuclear star clusters disappear, this ratio is expected to become a constant value.
As a byproduct of our investigation, we have found that the projected flux from resolved nuclear star clusters is well approximated with Sérsic functions having a range of indices from ∼0.5 to ∼3, the latter index describing the Milky Way's nuclear star cluster.  相似文献   

18.
19.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

20.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号