首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用柴达木盆地格尔木站2014年每日00:00和12:00 (世界时,下同) L波段探空数据计算得到的大气可降水量资料(P_(WV_RS))用来验证GPS数据反演的大气可降水量(P_(WV_GPS))精度。在此基础上,利用格尔木、德令哈两站P_(WV_GPS)资料,对该地区大气可降水量P_(WV)变化特征进行分析。结果表明:柴达木盆地P_(WV_RS)和P_(WV_GPS)逐日变化具有很好的一致性,P_(WV_GPS)略高于P_(WV_RS),两者相关系数在0. 9以上。夏秋季P_(WV_RS)和P_(WV_GPS)相关性明显好于冬春季,00:00的相关系数略高于12:00。00:00和12:00 P_(WV_GPS)均方根误分别为1. 8和2. 4 mm,平均相对误差分别为0. 2和0. 4,平均偏差分别为4. 2和4. 3 mm。柴达木盆地P_(WV_GPS)能够反映这一地区实际大气可降水量水平。柴达木盆地P_(WV_GPS)月变化呈单峰型分布,7月最大、12月最小。P_(WV_GPS)夏季最为丰富、秋季次之、冬季最小,呈南多北少的空间分布特征。柴达木盆地日均P_(WV_GPS)为0. 4~28. 0 mm,逐时P_(WV_GPS)为6. 9~7. 3 mm。  相似文献   

2.
利用拉萨2005—2017年逐小时降水观测资料和1969—2017年逐3 h降水观测资料,在分析该站汛期(5—9月)降水日变化特征的基础上,揭示该站昼夜降水的长期演变特征。结果表明:(1)拉萨小时降水量和降水频次日变化呈单峰型分布,两者峰值均出现在05:00(北京时,下同),谷值出现在15:00—17:00;小时降水强度日变化呈双峰型分布,峰值出现在17:00和00:00,谷值出现在13:00—15:00。(2)拉萨汛期不同等级降水的小时降水量和降水频次日变化位相不同,其中微雨和小雨的小时降水量和降水频次日变化为单峰型,且峰值均出现在05:00,而中雨及以上小时降水量和降水频次日变化峰值出现时间较微雨和小雨略有提前。(3)近49 a拉萨汛期昼夜降水量显著增多,降水强度显著增强,而降水日数无明显趋势,降水强度增强是拉萨汛期降水量增多的主要原因。  相似文献   

3.
GPS遥感的大气可降水量与局地降水关系的初步分析   总被引:24,自引:1,他引:24       下载免费PDF全文
该文利用2002年“973”项目安徽GPS外场试验和2000年北京GPS/VAPOR试验积累的资料对GPS遥感的大气可降水量与局地降水之间关系进行了定量分析。结果表明:在降水前后, GPS遥感的大气可降水量有很大的变化; 在2002年入梅前后, 其变化甚至大于30mm; 在海拔高的山区台站, 2hGPS遥感的大气可降水量增量和本站是否发生降水关系密切; 多数情况下, 降水出现在GPS遥感的大气可降水量迅速增加的3~4h内; 每小时降水量峰值和GPS遥感的大气可降水量增量的大小有关。  相似文献   

4.
利用2008—2017年1—12月新疆伊犁河谷10个气象站逐小时降水资料,分析伊犁河谷近10 a全年降雨雪(以下统称降水)时空分布特征。结果表明,伊犁河谷暖、冷季平原区、山区年平均逐时累积降水量和降水频次变化特征极其明显,暖季山区降水量和降水频次明显高于平原区,而冷季山区则低于平原区。暖季平原区、山区降水量最大值分别出现在22:00和00:00(以下均为北京时间),最小值出现在14:00和13:00;而冷季平原区、山区降水量最大值分别出现在10:00和11:00,最小值出现在18:00和17:00。全天中暖季最易发生降水的时间为23:00—翌日08:00;而冷季最易发生降水的时间为04:00—13:00。降水强度暖、冷季变化特征不明显,变化趋势与降水量、降水频次存在差异。全年降水主要以短时段降水为主,其中,暖、冷季平原区、山区降水持续1 h的次数均为最大值,但暖季平原区降水持续2 h和暖季山区持续4 h的降水量及贡献率为最大值,而冷季平原区、山区最大值则均出现在降水持续4 h情况下。  相似文献   

5.
利用欧洲中期数值预报中心ERA-Interim再分析数据集1979—2017年3 h降水资料,分析祁连山及其周边地区降水量时空分布特征。结果表明:研究区平均年降水量为232.4 mm,年降水量有增加趋势,气候倾向率为24.7 mm·(10 a)~(-1),其中半湿润区增加最为明显,气候倾向率达45.9 mm·(10 a)~(-1);研究区降水量于1996—1997年之间发生突变,年降水量在2000年后显著增多;季节降水量夏季最大,占年降水的54.08%,冬季最小,占年降水的3.88%;月降水量7月最大,为45.1 mm,12月最小,仅为2.7 mm;日降水量有2个峰值,最大峰值出现在14:00—20:00,次峰值出现在05:00—08:00。年降水量及其气候倾向率均与地形高度有较好的对应关系,海拔越高降水量越大,最大值出现在祁连山中部的高海拔地区;年降水量场多呈西北—东南向分布,中部和东部地区降水量较大。  相似文献   

6.
利用覆盖北京地区的地基GPS水汽监测网数据反演的地基GPS大气柱水汽含量 (precipitable water vapor, PWV),分析了2009年7月3次暴雨天气过程中大气柱水汽含量的水平分布特征;利用高空、地面常规气象资料以及加密气象自动站观测资料计算地面和高空比湿,结合温度、风等物理量分析3次暴雨天气过程中的大尺度水汽输送和中尺度局地辐合作用;对最大降水强度以及降水量的时间变化的分析表明:3次降水落区分布特征与降水前期大气柱水汽含量高值的水平分布较为一致;大气柱水汽含量曲线变化特征与各尺度天气系统造成的水汽输送和水汽辐合密切相关,大气柱水汽含量的大小与水汽来源密切相关;降水前4小时内大气柱水汽含量出现陡增,线性增速大于1.1 mm/h,最大降水强度出现在大气柱水汽含量峰值出现后的1~2 h。  相似文献   

7.
利用库尔勒市2005—2016年夏季(6—8月)逐时自记降水资料,分析库尔勒市夏季降水的日变化特征,结果表明:库尔勒夏季降水量日变化最大值出现在17:00,最小值在21:00。降水易发时段为02:00至12:00,降水频次最多出现在10:00,降水最不易产生的时刻为20:00。一天中降水强度最大值出现在17:00,最小值在21:00。≧0.1mm量级的降水出现次数最多,因此,库尔勒夏季降水以白天降水居多,且以持续时间1—3h的短持续性微到小雨为主。定时时次≧8成低云量出现频次与定时时次降水量、与定时时次降水出现频次差异极显著。  相似文献   

8.
GPS遥感大气可降水量在降水天气过程分析中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
应用GPS探测的大气可降水量(PWV)对2010年大连地区降水过程中水汽变化特征进行了分析。结果表明:GPS/PWV资料能反映大气中水汽的时间和空间变化,其变化特征与降水有较好的对应关系;不同性质的降水过程PWV变化特征明显不同,稳定性降水过程中PWV变化较为平缓,呈明显的单峰结构,对流性降水过程水汽变化程度剧烈,呈震荡趋势,而混合型降水具有两种性质降水的共同特征;降水过程中GPS/PWV阈值表明,GPS/PWV资料在降水天气预报方面有一定的应用价值。  相似文献   

9.
利用1985—2016年5—10月山东半岛地区24个气象观测站逐小时降水资料和2010—2016年5—10月ECMWF逐6 h再分析资料,详细分析了山东半岛夏半年降水的日变化特征。结果表明:(1)山东半岛地区夏半年降水量、降水频率和降水强度的日变化均呈双峰型特征,峰值出现在02:00—05:00和15:00前后,其中降水量和降水频率清晨峰值明显高于下午;(2)长持续性降水对总降水量的贡献大于短持续性降水,前者的日峰值出现在清晨03:00—06:00,后者的主峰出现在15:00—18:00,分别主导总降水量清晨和下午的峰值;(3)小雨对降水总频率的贡献最大,几乎占总频率的一半,而大雨和暴雨对总降水量的贡献更大,故而总降水量主要来自于大雨和暴雨。  相似文献   

10.
地基GPS遥感观测北京地区水汽变化特征   总被引:6,自引:1,他引:5       下载免费PDF全文
利用2004—2007年SA34(北京大学)站的GPS观测数据,运用GAMIT软件解算反演了间隔30min的连续变化大气水汽总量(PW)。与北京南郊观测场得到的探空结果作比较,均方根误差(RMSE)在2~3mm之间。通过对大气水汽作月平均,得到每月的大气水汽总量口变化曲线,并初步分析了夏季水汽日变化与地面比湿、降水、地面气温以及地面风矢量的关系。结果表明:北京地区夏季7月大气水汽总量最小值出现在08:00(北京时)左右,8月大气水汽总量最小值出现在08:00到12:00左右(各年表现出一定的差异),夏季大气水汽总量的最大值出现在01:00到03:00;7月和8月的日变化在夜间变化趋势有所不同;大气水汽总量最大值出现时刻与地面小时降水有一定相关性,且大气水汽总量的日变化明显受风矢量日变化的影响。通过对大气水汽总量的时间序列进行小波分析,得到1年大部分时间里,水汽变化存在大约12d的周期。采用前期的大气水汽总量平均值和短时大气水汽总量增量两个条件进行降水的判断,认为夏季降水的出现时刻与差值的高值区有比较好的对应。  相似文献   

11.
梁宏  刘晶淼  陈跃 《高原气象》2010,29(3):726-736
基于祁连山区2007年7~8月地基GPS遥感的大气可降水量(Precipitable Water,PW)资料、探空资料和自动气象站资料,采用谐波分析等方法,分析了祁连山区夏季PW的日变化特征,并初步探讨其成因。结果表明:祁连山区夏季PW具有明显的日变化特征。PW日变化特征在无降水日比有降水日更显著。日循环(24 h)与半日循环(12 h)是PW日变化的主要信号。在无降水日,PW日变化以日循环为主,振幅为0.8~1.6 mm,峰值出现的时间在18:00~21:00(北京时,下同)。半日循环的振幅为0.6~0.7 mm,峰值出现的时间在05:00~06:00和17:00~18:00。在有降水日,不同站点PW日变化特征有所不同,有的以日循环为主导,有的以半日循环为主导。PW日变化与逐时累积降水频次日变化具有明显的先后关系,两者日变化的位相差为2.5 h。PW日变化与气温和比湿等要素的日变化以及山谷风演变有关。  相似文献   

12.
利用2012—2019年新疆伊犁河谷10个气象站逐小时降水资料,分析该区域不同季节降水的日变化特征。结果表明:(1)伊犁河谷春季、夏季和冬季的累计降水量日变化呈单峰型,秋季呈双峰型。四季累计降水量日变化的低值都出现在下午(15:00—19:00),高值时段在春季、秋季和冬季的上午(10:00—12:00),夏季高值出现在前半夜(22:00)。(2)同一季节累计降水频次和累计降水量的日变化特征类似,逐时平均降水量和降水频次峰值的空间分布均存在明显区域差异。(3)伊犁河谷四季均以短历时降水事件为主,该类事件在夏季出现比例最高(89%),冬季出现比例最低(70%),且短历时降水事件是夏季总降水量的主要贡献者,而长持续性降水事件是冬季总降水量的主要贡献者。(4)伊犁河谷四季降水的日循环与降水的持续性之间都存在密切关系,其中持续2~8 h和1~4 h的降水事件是春季和夏季降水量日变化峰值的主要贡献者,不同持续时间降水事件对秋季和冬季降水量日变化峰值的贡献大致相等。  相似文献   

13.
2002年台风Ramasun影响华东沿海期间可降水量的GPS观测和分析   总被引:17,自引:1,他引:17  
介绍了2002年建成的长江三角洲地区GPS(全球定位系统)网对台风Ramasun影响华东沿海地区时可降水量的探测,指出GPS探测的可降水量(PWV)与加密探空资料所计算的可降水量具有高度的一致性.通过对多站GPS资料时间序列的分析,揭示了在台风影响过程中PWV 的三个阶段的变化特征: 在台风降水产生前PWV 都有一个急升的过程,PWV的急升时间长短、升幅、量值大小反映了水汽累积情况,它与台风过程降水总量、每小时降水量大小有较好的对应关系;PWV 急升达到峰值后进入高值波动阶段,一般在达到峰值后7~10小时开始出现明显的降水, 在这一阶段中PWV 时间序列的波动和空间分布特征与台风降水的短时变化和螺旋雨带演变有较好的对应关系;PWV 的急降则反映台风降水即将结束.  相似文献   

14.
利用石家庄、秦皇岛和张家口2005—2006年4~10月地基GPS反演的可降水量资料和常规天气资料,对可降水量与实际降水的关系进行统计,按降水性质,选取单纯积状云产生的对流降水、单纯层状云产生的稳定性降水及层积混合云产生的暴雨三类样本,对可降水量在三类典型降水过程中的演变趋势进行了分析。结果表明:大气中存在高值可降水量是降水产生的必要条件;可降水量呈阶段性、波状变化特点,其变化幅度、极值水平和持续时间与天气影响系统、降水性质等密切相关;降水强度和可降水量极大值出现时间不一定吻合,但强降水通常出现在可降水量的高值阶段,可降水量的高值阶段往往对应着较高的降水概率。另外,可降水量在以上三类性质降水中表现出不同特征,可为降水的短时临近预报提供参考。  相似文献   

15.
基于昌吉市2008—2015年逐时自动降水资料,分析了主汛期(5—8月)降水日变化特征。结果表明,降水主要集中在夜间21:00至翌日03:00,最大值出现在02:00,最小值出现在14:00;逐时降水频次为明显的单峰型,降水易发生在21:00至翌日08:00,降水频次的高峰值出现在01:00,降水最不易产生于午后15:00至18:00;降水强度变化的波动性较大,大值区出现在21:00至翌日02:00和午后15:00至19:00,最高值出现在18:00,最低值出现在04:00至08:00;在≥0.1 mm、≥1 mm和≥3 mm的逐时降水频次中,夜间降水频次较白天高,≥0.1 mm的降水出现次数较多;降水主要以夜雨,且以短时间(1—4h)的降水为主,贡献率最大的是持续7h的降水,最小的为12h;总云量和低云量的变化与降水量成显著正相关关系。  相似文献   

16.
湖南夏季降水日变化特征   总被引:12,自引:2,他引:10       下载免费PDF全文
戴泽军  宇如聪  陈昊明 《高原气象》2009,28(6):1463-1470
利用湖南96个测站13年的逐时自记降水资料, 分析了夏季(6~8月)降水日变化特征。结果表明, 湖南夏季降水日变化呈现显著的区域差异。湘东南降水量、 降水频次峰值主要出现在午后到傍晚, 而其它地区的降水峰值一般出现在清晨。进一步分析显示, 降水频次峰值出现时次分布更集中, 区域特征更鲜明。湘西北、 湘东南区域平均的累积降水量、 降水频次及降水强度的日变化在清晨和午后均呈双峰型特征。湘西北主(次)峰值出现的时间大致与湘东南次(主)峰值出现的时间对应。同时, 降水日变化与降水持续时间密切相关。持续5~10 h降水事件是持续1~4 h事件与持续10 h以上事件降水量峰值出现时间发生显著变化的过渡降水事件。持续1~4 h(10 h以上)的降水事件的极值降水始发时间为午后至傍晚(夜间)。在不同持续时间的降水事件中, 持续2 h降水的累积量最大。  相似文献   

17.
基于GPS可降水资料的一次连续性暴雨过程的分析   总被引:2,自引:0,他引:2  
利用2008年9月22~26日GPS可降水量资料(GPS PWV)对成都地区一次持续性暴雨过程做分析。结果表明,当PWV由谷底缓慢上升或由峰顶缓慢下降时,对应着实际降水的开始和结束。PWV上升的急剧程度与实际降水强度有着较好的对应关系。用每小时变量或3小时变量来分析降水的开始时间、强度和落区等有很好的效果。但是降水预报需要全面考虑大气动力条件和热力条件,并结合多种探测信息提出利用GPS产品进行降水预报的若干指标。   相似文献   

18.
用GPS可降水量资料对一次大-暴雨过程的分析   总被引:13,自引:4,他引:9  
利用2002年9月10~20日GPS的可降水量资料与实况降水场做了分析比较,结果表明,每30分钟的可降水量连续观测资料对实际降水预报有着一定的指导意义.首先,可降水量第一次达到及最后一次出现50mm的时间与实际降水的开始、结束时间有着较好的对应关系,而可降水量≥50mm的持续时间越长,实际降水量也就越大,反之则相反;其次,可降水量的3小时及24小时变化对预报未来降水区域和雨量分布有着一定的指示作用;最后,可降水量在降水过程中不同阶段的趋势变化反映了500hPa流场、700hPa水汽通量场的变化,这为实际降水预报中水汽的来源及输送提供了更有利的依据.  相似文献   

19.
利用2012—2019年冬季昌吉州11个国家级台站逐时降水资料,运用常规统计方法,对昌吉州冬季降雪日变化特征进行分析。结果表明:昌吉州冬季降雪量空间分布与海拔高度呈正相关,与纬度呈显著的负相关,降雪强度与纬度关系密切。全州逐时累积降雪量呈双峰型分布,主峰出现在下午17:00,次峰出现在上午08:00;西部呈三峰型特征,主次峰值分别出现在17:00、14:00、08:00;东部呈准单峰单谷型,峰值发生在19:00,谷值出现在中午13:00。昌吉州冬季降水事件以短时降水事件为主,对冬季降水量贡献为64%,12 h以上长持续性降水事件发生概率很小,仅在部分台站偶有发生。西部和东部冬季降水日循环与降水持续性关系较密切,其中持续3~4 h降水事件对西部和东部冬季降水量贡献最大,但随着持续时间增长对降水量的贡献却越来越小。  相似文献   

20.
用GPS可降水量资料对一次大一暴雨过程的分析   总被引:8,自引:2,他引:8  
利用2002年9月10~20日GPS的可降水量资料与实况降水场做了分析比较,结果表明,每30分钟的可降水量连续观测资料对实际降水预报有着一定的指导意义。首先,可降水量第一次达到及最后一次出现50mm的时间与实际降水的开始、结束时间有着较好的对应关系,而可降水量≥50mm的持续时间越长,实际降水量也就越大,反之则相反;其次,可降水量的3小时及24小时变化对预报未来降水区域和雨量分布有着一定的指示作用;最后,可降水量在降水过程中不同阶段的趋势变化反映了500hPa流场、700hPa水汽通量场的变化,这为实际降水预报中水汽的来源及输送提供了更有利的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号