首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sediments are the ultimate sink for contaminants in the marine environment, and physical processes of sedimentation influence the distribution and accumulation of these contaminants. Evaluation of contaminant levels in sediments is one approach to assessing environmental impact; data interpretation depends on consideration of sediment texture and mineralogy, however, which profoundly influence chemical composition. In this study, comparison of potentially contaminated sediments from the production field with control populations was done only within the context of similar (as to texture and organic carbon and carbonate content) sample groups as determined by cluster analysis. Ba, Cd, and Sr are identified as contaminants. Supported by the identification of a well-crystallized expandable clay—possibly bentonite—drilling fluids are a potential source of Ba. Ba and Sr may be unnaturally high because of their abundance in discharged produced formation waters, but may also be naturally controlled by the unique faunal assemblage associated with the structures. Cd is probably derived from corrosion of the structures and assorted debris on the seafloor. In general, contamination is limited to an area within 100 m of the platforms. Furthermore, substantial erosion around platforms has probably effectively removed and dispersed the bulk of the contaminants introduced into the marine environment by the offshore exploration/production operations.  相似文献   

2.
The Linok Formation is made up of clayey and carbonate strata, 180–300 m thick, formed at the terminal Middle Riphean on the northwestern margin of the Siberian Platform. In the modern structure, it is exposed in the lower part of the Turukhansk Uplift section. The sediments accumulated in the distal part of the epiplatformal basin as a symmetrical transgressive–regressive cycle. Its lower part represents a deep-water basin environment with the mixed carbonate–clayey sedimentation, whereas the upper part reflects the origination and evolution of a carbonate platform. Microstructures discussed in this work suggest not only the ancient existence of benthic microbial assemblages (mats) but their active influence upon the facies pattern of sediments as well. The influence was determined by the ability of mat-forming communities to produce carbonate sediments under certain environmental conditions. The analysis of the facies succession suggested the absence of an appreciable influx of carbonate material to the basin from other sources. Based on the carbonate generation ability, one can distinguish three (carbonate-free, low-productive, and high-productive) groups of microbial communities. Groups 1 and 2 represent deep-water basin mats, whereas group 3 represents relatively shallow-water platformal microbial–mineral systems. The carbonate productivity of communities is inversely proportional to the depth of their dwelling and the relative rate of clayey sedimentation. The morphological reconstruction of microbiolite structures showed that the structures in basins and platforms greatly differed in terms of the size of elements. The ability of microbial communities to generate carbonate could be realized only within large ecosystems.  相似文献   

3.
the shorikha basin characterized by a thick (>800 m) sequence of carbonate sediments in the upper part of the riphean section in the turukhansk uplift of siberia illustrates the dynamics of taxonomic diversity and abundance of stromatolite buildups related to changes in the structure of a carbonate platform (replacement of the relatively deep ramp by a spacious shallow shelf) and fluctuations of the relative sea level. it is shown that abundance and taxonomic diversity of stromatolite buildups were maximal in deep zones of the outer ramp being reduced to almost zero values in shallow settings of the carbonate shelf. the appearance of columnar stromatolites coincided in this basin only with brief sea-level rises (second-order transgressions). stromatolite-forming microbial communities represented an active producer of carbonate sediments for the entire basin, while the distribution of stromatolites through ramps was determined by geochemical barriers. disappearance of stromatolites from shallow carbonate shelves was controlled by rapid reduction in carbonate-production rates.  相似文献   

4.
Silicified shallow-water marine carbonate deposits of the Proterozoic Debengda Formation (the Olenek Uplift, northeastern Siberia) contain well preserved microfossils. One or two distinct assemblages consists only of filamentous Siphonophycus microfossils, which are presumably the extracellular sheaths of hormogonium cyanobacteria. The other is dominated by coccoidal microfossils, first by the entophysalidacean cyanobacterium Eoentophysalis. The coccoidal assemblage was recognized in the layered carbonate precipitate structures of a superficially stromatolite appearance. Despite its simple composition, the microfossil assemblage supports the generally accepted Mesoproterozoic (middle Riphean) age of the Debengda Formation. This conclusion corresponds to the available data on isotopic geochronology, and to the composition of columnar stromatolites from the Dehengda Formation. Both the structural features and carbon isotopic composition of its rocks are comparable to those of rocks of known Mesoproterozoic age, but differ from the characteristics of definitely Neoproterozoic deposits.  相似文献   

5.
河南登封地区寒武系第三统馒头组二段发育有三种类型的核形石:球状、椭球状核形石与大型柱状叠层石伴生,形成于高能的潮下带;长卵形核形石与小型柱状叠层石伴生,形成于低到中等能量的潮间带;不规则状核形石与近水平状、缓波状叠层石伴生,形成于低能的潮上带和潮间带。从核形石的成因可以看出,核形石等微生物成因构造与后生动物扰动构造存在耦合关系,水动力条件是核形石形态类型变化的决定因素,泥质(陆源物质)供应是影响核形石生长及消亡的直接因素。  相似文献   

6.
The silicate and carbonate fraction of 98 non-metamorphic shale samples from the Australian platform and of different geological age were analysed for calcium, magnesium, ferrous iron and carbonate. Cainozoic and Mesozoic shales prove to be essentially calcitic, Cambrian and Proterozoic shales are essentially dolomitic and sideritic. A similar trend of high MgO values can be demonstrated for the silicate fraction of the old shales. Extensive literature study confirms these trends for shales and carbonate rocks from all over the world. Slates, hornfelses and schists are Mg rich and Ca poor, whether young or old.Ronov's model of the evolution of the earth's crust ocean and atmosphere, explaining these trends, is critically reviewed but rejected because of impossible storage problems of calcium in the Proterozoic. The increased magnesium content of the old sediments is explained by calcium carbonate sweating out of the sedimentary column, magnesium introduction from altering volcanic rocks within the sedimentary pile and magnesium introduction from connate brines in sandstones. The increasing calcium content of all kinds of sediments with decreasing age is claimed to be related to preferential weathering of extrusive volcanic rocks and sweating out of calcium carbonate from the sedimentary column.  相似文献   

7.
Using the Linok Formation as an example, spatiotemporal relationships between siliciclastic and carbonate systems in the epeirogenic-type basin and an initial stage of the carbonate platform development are considered. Clayey-carbonate rocks of the Linok Formation correspond to the middle part of the upper Middle Riphean, up to 1.4 km thick terrigenous-carbonate cycle occurring at the base of the Turukhansk Uplift section. The formation is subdivided into the lower clayey-calcareous (18–43 m), middle, mainly argillite (40–75 m), and upper carbonate (120–220 m) subformations. The analysis of facies associations revealed that the formation was deposited as a symmetrical transgressive-regressive rock succession representing a common stratigraphic sequence. Rocks from the lower and middle subformations correspond to the agradational development of the distal and relatively deep part of the basin with mixed clayey-calcareous sedimentation, whereas the upper subformation reflects the processes of formation and expansion of the carbonate platform. It is shown that the platform development initiated in the external area of the basin, from where fine-grained sediments expanded to the internal deep-water zones. It is assumed that progradation of the platform at the initial stage of its development was characterized by diffused patterns  相似文献   

8.
A variety of finely laminated, subfossil, aragonitic stromatolites and oncolites occur on a regressive marginal flat surrounding Marion Lake, South Australia. These algal forms overlie a substrate of coarse, highly porous, moldic aragonitic limestone which passes progressively towards the take centre through a zone of interstatified aragonite and gypsum and ultimately to pure crystalline gypsum. All of these facies overlie Holocene marine carbonate bank sediments which unconformably overlie at least one upper Pleistocene marine unit. Detailed petrographic and stratigraphic studies, combined with comparative studies of related nearby lakes containing a variety of living aragonitic cryptalgalaminates, provide a model for development of the Holocene sedimentary sequence. Marion Lake last became inundated by the sea around 6500 years ago during the Holocene transgression, when a protected marine environment was initiated. Lateral sediment accretion sealed marine passes into the resulting lagoon system soon after sealvel stabilized, and a variety of gypsum and gypsum-carbonate-algal facies evolved. Pure gypsum was deposited in waters 2–3 m deep in the central basin area concurrently with formation of seasonally alternating gypsum and aragonite layers towards basin margins. Blue-green filamentous algae thrived in the shallower marginal areas and at least partly controlled carbonate deposition, which must have occurred during seasonal outflow of carbonate-rich ground water from the calcareous dune aquifer over denser gypsum-saturated waters. These systems eventually migrated towards the centre of the lake to produce the relationships preserved today. The fresher waters also leached the gypsum from the marginal gypsum-carbonate facies. Collapse due to gypsum dissolution, along with aragonite crystallization, combined to form a lake-marginal mega-polygonal facies. Teepee structures formed around polygon margins, with optimum conditions for stromatolite development occurring on the teepee crests. The actual stromatolites which occur around Marion Lake are strongly indurated and involve a variety of morphologies, the most common of which are laterally linked hemispheroids. Stacked hemispheroids and oncolites are also relatively common, along with irregular forms, many of which encrust a variety of substrate irregularities. Vertical relief of the stromatolites varies from centimetres to tens of centimetres and all forms are characterized by extremely fine internal interlaminations of alternate light and dark grey laminae which typically occur several per millimetre. The microstructure comprises micritic aragonite crystals with fibrous habit associated with organic matter, and occasional zones of abundant algal filament molds which are generally oriented normal to the laminae.  相似文献   

9.
Molar tooth (MT) structures are enigmatic, contorted millimetre‐ to decimetre‐long veins and spheroids of microcrystalline calcite that formed during very early diagenesis in Precambrian sediments. MT structures in the ca 2·6 Ga Monteville Formation are 600–800 Myr older than previously reported occurrences and establish that conditions necessary for MT genesis were met locally throughout much of the Precambrian. In the Monteville Formation, MT structures were formed shallow subtidally, extending to depths near storm wave base, in shale host sediments intercalated with storm‐generated carbonate sand lenses. They are filled with microcrystalline calcite and rare pyrite. Microcrystalline calcite identical to that in MT structures fills other pore space, including porosity between grains in carbonate sand lenses, moldic porosity in sand grains, sheet cracks in columnar stromatolites, and shallow cracks on sandy bedding planes. Relationships in the Monteville Formation demonstrate that microcrystalline CaCO3 precipitated in fluid‐filled cracks and pores; microcrystalline calcite characteristics, as well as the paucity of carbonate mud in host rocks, are inconsistent with injection of lime mud as the origin of MT structures. Locally, MT cracks were filled by detrital sediment before or during precipitation. Precipitation occurred in stages, and MT CaCO3 evolved from granular cores to a rigid mass of cores with overgrowths – allowing both plastic and brittle deformation of MT structures, as well as reworking of eroded MT structures as rigid clasts and lime mud. Crystal size distributions and morphology suggest that cores precipitated through nucleation, Ostwald ripening and size‐dependent crystal growth, whereas overgrowths formed during size‐independent crystal growth.  相似文献   

10.
中—新元古代地层在南乌拉尔海槽中极为发育,地层厚度巨大,几个阶段的构造演化和沉积特征清晰可见。新太古代和下里菲是俄罗斯重要的大型层状铁矿和菱镁矿的宿主地层,中里菲群(元古宙地层)地层厚度极大,伴随了几次沉积旋回,发育了从深海相到大陆缓坡的碳酸盐岩沉积;随着新元古代末次冰期之后,文德系发育了可全球对比的白海动物群(伊迪卡拉动物群)。笔者首次确认了南乌拉尔地区中—新元古代地层3套臼齿构造,其中巴卡尔组(Bakal)碳酸盐岩臼齿构造与碎屑岩地震液化脉互层共生,特别是大量臼齿构造也发育在大型叠层石中。从臼齿构造与碎屑岩液化脉互层的共生特征,说明发育在碳酸盐岩中臼齿构造与地震机理的液化作用有关。该3套臼齿构造与中国华北地台中—新元古代地层中发现的臼齿构造(液化脉)时代大体接近。  相似文献   

11.
The significance of stromatolites as depositional environmental indicators and the underlying causes of lamination in the lacustrine realm are poorly understood. Stromatolites in a ca 600 m thick Miocene succession in the Ebro Basin are good candidates to shed light on these issues because they are intimately related to other lacustrine carbonate and sulphate facies, grew under variable environmental conditions and show distinct lamination patterns. These stromatolites are associated with wave‐related, clastic‐carbonate laminated limestones. Both facies consist of calcite and variable amounts of dolomite. Thin planar stromatolites (up to 10 cm thick and less than 6 m long) occurred in very shallow water. These stromatolites represented first biological colonization after: (i) subaerial exposure in the palustrine environment (i.e. at the beginning of deepening cycles); or (ii) erosion due to surge action, then coating very irregular surfaces on laminated limestones (i.e. through shallowing or deepening cycles). Sometimes they are associated with evaporative pumping. Stratiform stromatolites (10 to 30 cm high and tens of metres long) and domed stromatolites (10 to 30 cm high and long) developed in deeper settings, between the surge periods that produced hummocky cross‐stratification and horizontal lamination offshore. Changes in stromatolite lamina shape, and thus in the growth forms through time, can be attributed to changes in water depth, whereas variations in lamina continuity are linked to water energy and sediment supply. Growth of the stromatolites resulted from in situ calcite precipitation and capture of minor amounts of fine‐grained carbonate particles. Based on texture, four types of simple laminae are distinguished. The simple micrite and microsparite laminae can be grouped into light and dark composite laminae, which represent, respectively, high and low Precipitation/Evaporation ratio periods. Different lamination patterns provide new ideas for the interpretation of microbial laminations as a function of variations in climate‐dependent parameters (primarily the Precipitation/Evaporation ratio) over variable timescales.  相似文献   

12.
叠层石成因和形成条件的研究综述   总被引:14,自引:0,他引:14  
综合介绍了最近20多年有关叠层石成因与形成条件的研究成果及其进展,包括与成因有关的各种叠层石类型,微生物席组分及内部结构特征,叠层石的形成与光合作用、硫还原作用等生物作用的密切关系,以及基本的形成过程和方式,同时与现代叠层石对比,简要总结了叠层石生长所需要的特殊沉积、水体和生物环境条件。  相似文献   

13.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

14.
梅朝佳 《古地理学报》2018,20(3):453-464
作为微生物碳酸盐岩的主要类型之一,叠层石是微生物席的主要建造物已成为共识。天津蓟县中元古界铁岭组二段叠层石生物礁灰岩发育,其中的细粒叠层石被前人解释为微生物席捕获碳酸盐泥的微生物建造物,使得其既不同于现代叠层石,也不同于显生宙尤其是寒武纪的叠层石。更为特殊的是,这些叠层石中的海绿石和黄铁矿代表着2种特殊的矿化作用,其中研究区普遍产出的黄铁矿,作为硫酸盐还原细菌的产物,是了解古代微生物的窗口;而发育在高能浅海的海绿石,产出环境不同于现代海绿石,不能作为慢速沉积环境的指示矿物,亦不具有沉积间断的地质意义。2种矿化作用表明铁岭组叠层石是由沉淀作用而非捕获碳酸盐泥形成,这为了解中元古代叠层石的形成和特征提供了一些有益的线索。  相似文献   

15.
Fossil stromatolites may reveal information about their hydrochemical palaeoenvironment, provided that assignment to a specific microbial community and a corresponding biogeochemical mechanism of formation can be made. Tithonian stromatolites of the Münder Formation at Thüste, north Germany, have traditionally been considered as formed by intertidal cyanobacterial communities. However, thin sections of the stromatolites show elongated angular traces of former gypsum crystals in a dense arrangement, but no algal or cyanobacterial filament traces. Moreover, high Fe2+ and Mn2+ contents, oxygen‐isotope and sulphur‐isotope ratios of carbonate‐bound sulphates, and sulphurized hydrocarbon biomarkers of the stromatolitic carbonate indicate that CaCO3 precipitation occurred near the oxic–anoxic interface as a result of intensive bacterial sulphur cycling rather than photosynthetic activity. Furthermore, anaerobic oxidation of methane by Archaea may have driven CaCO3 precipitation in deeper parts of the biofilm community, as reflected by high concentrations of squalane with a strongly negative δ13C in conjunction with evaporite pseudomorphs showing extremely low δ13CCarb ratios. Consequently, the Thüste stromatolites are now interpreted as having initially formed by gypsum impregnation of biofilms. Subsequently, early Mg‐calcitic calcitization within the biofilms occurred because of combined bacterial iron, manganese and sulphate reduction, with an increasing contribution of anaerobic oxidation of methane with depth. This model plausibly explains the prominent preservation of signals derived from oxygen‐independent metabolic pathways, whereas virtually no geochemical record exists for an aerobic community that may, nevertheless, have prevailed at the stromatolite surface. Photic‐zone stromatolites with a prominent signal of anaerobic oxidation of methane may be common in, and indicative of, oxygen‐depleted sulphate‐bearing environments with high rates of methane production, conditions that possibly were fulfilled at the Archaean to Proterozoic transition.  相似文献   

16.
The Mesoproterozoic Tieling Formation, near Jixian, northern China, contains thick beds of vertically branched, laterally elongate, columnar stromatolites. Carbonate mud is the primary component of both the stromatolites and their intervening matrix. Mud abundance is attributed to water column ‘whiting’ precipitation stimulated by cyanobacterial photosynthesis. Neomorphic microspar gives the stromatolites a ‘streaky’ microfabric and small mud flakes are common in the matrix. The columns consist of low‐relief, mainly non‐enveloping, laminae that show erosive truncation and well‐defined repetitive lamination. In plan view, the columns form disjunct elongate ridges <10 cm wide separated by narrow matrix‐filled runnels. The stromatolite surfaces were initially cohesive, rather than rigid, and prone to scour, and are interpreted as current aligned microbial mats that trapped carbonate mud. The pervasive ridge–runnel system suggests scale‐dependent biophysical feedback between: (i) carbonate mud supply; (ii) current duration, strength and direction; and (iii) growth and trapping by prolific mat growth. Together, these factors determined the size, morphology and arrangement of the stromatolite columns and their laminae, as well as their branching patterns, alignment and ridge–runnel spacing. Ridge–runnel surfaces resemble ripple mark patterns, but whether currents were parallel and/or normal to stromatolite alignment remains unclear. The formation and preservation of Tieling columns required plentiful supply of carbonate mud, mat‐building microbes well‐adapted to cope with this abundant sediment, and absence of both significant early lithification and bioturbation. These factors were time limited, and Tieling stromatolites closely resemble coeval examples in the Belt‐Purcell Supergroup of Laurentia. The dynamic interactions between mat growth, currents and sediment supply that determined the shape of Tieling columns contributed to the morphotypical diversity that characterizes mid–late Proterozoic branched stromatolites.  相似文献   

17.
Comparison of microbially induced sedimentary structures (MISS) and stromatolitic bearing horizons from the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya, has been scrutinised to understand the formative processes and controls on MISS and stromatolites in the context of sedimentary facies and response to sea level fluctuations. MISS structures recorded are wrinkle structures, Kinneyia ripples, load casts, domal structures, sand chips, palimpsest and patchy ripples with limited desiccation cracks. Stromatolitic morphotypes recorded are solitary, branching, wavy and domal forms of stromatolites associated with ooids, peloids and fenestral laminae. MISS structures flourished within tidal flats to shallow intertidal while stromatolites mushroomed in environments ranging from tidal to deep subtidal. MISS structures were favoured by resistant substratum, low energy conditions, consistent water supply and low terrigenous input. Stromatolites boomed when the volume of carbonate accumulation exceeded siliciclastic deposition. Fluctuating environmental conditions and sediment budget controlled morphology of stromatolites. Owing to limited siliciclastic input during deposition of dolomudstones (characterizes transgressive systems tract), microbial growth was enhanced. Calcareous shales were deposited over dolomudstones which marks the maximum flooding surface (MFS) indicating the culmination of transgression. Deposition of storm-dominated sandstone-siltstone (FA1), wave-rippled sandstones (FA2), tide-dominated sandstones (FA3), heteroliths (FA4), wackestone-packestone (FA6), boundstone (FA7) and ooid-peloid grainstone (FA8) on top of the MFS reflects initiation of highstand systems tract (HST) which is mainly characterized by stromatolitic horizons, alternation of carbonates and siliciclastics with flourishing microbial activity. Eventually, increased sedimentation in upper part of Kunihar Formation marks late stage of regression.  相似文献   

18.
The Rb-Sr and U-Pb systematics were studied for carbonate rocks of the Lower Riphean Bakal Formation of the southern Urals and related siderite ores of the Bakal iron deposit. The least-altered limestones taken at a significant distance from the Bakal ore field satisfy the strict geochemical criteria of retentivity: Mn/Sr < 0.2, Fe/Sr < 0.5, and 87Sr/86Sr (difference between the measured 87Sr/86Sr values in secondary and primary carbonate phases) < 0.001. The least-altered carbonate phases were extracted by the stepwise dissolution in 0.5 N HBr. The Pb-Pb date of limestones (1430 ± 30 Ma) defines the age of early diagenesis of carbonate sediments of the Bakal Formation. The 87Sr/86Sr ratio in the sedimentary environment of the Bakal carbonates (0.70457–0.70481) yields isotopic signature for the Early Riphean seawater. The Pb-Pb age of metasomatic siderites (1010 ± 100 Ma), which formed at the end of the main ore formation stage and did not undergo late epigenesis, corresponds to the final phases of the Grenville tectonogenesis. Siderites of the main ore formation stage are confined to central parts of the thickest carbonate units and have high ratios of 87Sr/86Sr (0.73482–0.73876) and 208Pb/204Pb (41.4–42.9). Iron-bearing solutions formed during the diagenesis of mainly Lower Riphean clayey rocks and migrated along low-density zones and faults. The solutions discharged at the interformational unconformity between the Bakal and Zigalga formations. At the contact with shales, carbonate rocks and siderites experienced the later epigenetic dolomitization (partial desideritization) caused by the circulation of solutions enriched in radiogenic 87Sr and low-radiogenic 206Pb. This dolomitization occurred simultaneously with the Cadomian tectonothermal activation of the region.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 227–249.Original Russian Text Copyright © 2005 by Kuznetsov, Krupenin, Ovchinnikova, Gorokhov, Maslov, Kaurova, Ellmies.  相似文献   

19.
Sedimentological, morphological, and geochemical characteristics of molar tooth (MT) structures in the ca 2·6 Ga Monteville Formation suggest a new fluid flow model for MT formation: (i) intercalated shales and carbonate sands were deposited near to above storm wave base; (ii) sediments cracked, forming an interconnected network of MT cracks that were also open to pores in sand lenses; (iii) storm waves pumped sea water into open MT crack networks, causing rapid microcrystalline carbonate nucleation, Ostwald ripening of nuclei, and growth of granular carbonate cores; some of these cores were transported by water flowing through the cracks; (iv) unfilled MT cracks collapsed, and filled MT ribbons deformed plastically as host sediments compacted and dewatered; (v) carbonate cores were overgrown by polygonal rims; and (vi) MT structures deformed brittlely with additional compaction and produced pebbly lags if reworked. MT cracks may have formed by multiple mechanisms; however, expansion of gas from organic decay and sediment heaving due to wave loading best explain MT crack morphology and are most consistent with the fluid flow model for MT CaCO3 presented here.  相似文献   

20.
Cool-water skeletal carbonate sediments are forming in Spencer Gulf, South Australia, an area of high salinity and moderate tidal range. Four environments can be distinguished: deeper marine areas (10–20 m); shallow subtidal platforms and banks (2–10 m); intertidal and supratidal zones; and coastal springs and lakes fed by saline continental groundwaters. The sediments are predominately bioclastic carbonate sands; muddy sediments occur in protected intertidal environments. The most common grain types are gastropods, bivalves, foraminifera, coralline algae and quartz. Indurated non-skeletal carbonate grains have not been seen. Composition of the sediment varies little between environments, but considerable textural variation results from variation in the stability of the substrate, hydrodynamic conditions, depth of water, period of tidal inundation, supply of terrigenous grains, temperature, and salinity. The Spencer Gulf data suggests that temperature, and particularly minimum temperature, controls the distribution of skeletal and non-skeletal grain associations in high-salinity environments. The textures of the sedimentary facies of Spencer Gulf closely parallel those of equivalent environments in warm-water carbonate provinces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号