首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The response of autoclaved aerated concrete confined masonry buildings to seismic ground motion has been studied. Three 1:4 scale models of residential buildings with the same distribution of walls in plan but different types of floors and number of stories have been tested on a uni-directional shaking table. Lightweight prefabricated slabs have been installed in the case of the three-storey model M1, whereas reinforced concrete slabs have been constructed in the case of three-storey model M2 and four-storey model M3. Model M1 was subjected to seismic excitation along the axis of symmetry, whereas models M2 and M3 were tested orthogonal to it. Typical storey mechanism, characterised by diagonal shear failure mode of walls in the ground floor in the direction of excitation has been observed in all cases. Taking into consideration the observed behaviour, a numerical model with concentrated masses and storey hysteretic rules has been used to simulate the observed behaviour. Storey resistance curves calculated by a push-over method and hysteretic rules, which take into account damage and energy based stiffness degradation hysteretic rules, have been used to model the non-linear behaviour of the structure. Good agreement between the experimentally observed and calculated non-linear behaviour has been obtained.  相似文献   

3.
The efficiency of improving the seismic resistance of old masonry buildings by means of seismic isolation and confining the structure with CFRP laminate strips has been investigated. Five models of a simple two-story brick masonry building with wooden floors without wall ties have been tested on the shaking table. The control model has been built directly on the foundation slab. The second model has been separated from it by a damp-proof course in the form of a PVC sheet placed in the bed-joint between the second and the third course, whereas the third model has been isolated by rubber isolators placed between the foundation slab and structural walls. Models four and five have been confined with CFRP laminate strips, simulating the wall ties placed horizontally and vertically at floor levels and corners of the building, respectively. One of the CFRP strengthened models has been placed on seismic isolators. Tests have shown that a simple PVC sheet damp-proof course cannot be considered as seismic isolator unless adequately designed. Tests have also shown that the isolators alone did not prevent the separation of the walls. However, both models confined with CFRP strips exhibited significantly improved seismic behavior. The models did not collapse even when subjected to significantly stronger shaking table motion than that resisted by the control model without wall ties.  相似文献   

4.
The results of tests of plain and confined masonry walls with h/l ratio equal to 1·5, made at 1:5 scale, have been used to develop a rational method for modelling the seismic behaviour of confined masonry walls. A trilinear model of lateral resistance–displacement envelope curve has been proposed, where the resistance is calculated as a combination of the shear resistance of the plain masonry wall panel and dowel effect of the tie-columns’ reinforcement. Lateral stiffness, however, is modelled as a function of the initial effective stiffness and damage, occurring to the panel at characteristic limit states. Good correlation between the predicted and experimental envelopes has been obtained in the particular case studied. The method has been also verified for the case of prototype confined masonry walls with h/l ratio equal to 1·0. Good correlation between the predicted and experimental values of lateral resistance indicates the general validity of the proposed method. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
The in‐plane cyclic behaviour of three types of unreinforced clay masonry was characterized by means of laboratory tests on full‐scale specimens. The masonry walls were assembled with various bonding arrangements (head joints made with mortar pockets, dry head joints with mechanical interlocking, thin‐layer mortar bed joints), which are not yet inserted in seismic codes. Experimental behaviour was modelled with an analytical hysteretic model able to predict lateral load–displacement curves in case of shear failure of the unreinforced walls. According to the experimental results and those of the selected analytical model, parametric study to evaluate the reduction in lateral strength demand produced by non‐linear behaviour in masonry walls, i.e. the load reduction factor was carried out by non‐linear dynamic analyses. The calculated values of the load reduction factor were modest. The differences in values found for the three masonry types, although consistent with them, were not great. This may indicate that, in the ultimate limit state, the type of masonry cannot significantly affect the behaviour of an entire building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
带构造柱和圈梁的约束砌体结构在四川灾区乡镇房屋重建中被广泛采用,其抗震性能是人们所关心的.基于绵竹市土门镇当地重建房屋常用建筑材料的实验数据以及通用有限元软件ANSYS中Solid 65单元的性质和特点,用有限元模型模拟了粘土砖砌体在不同压应力状态(σ-/fm)下沿通缝截面抗剪强度试验,给出了相关单元在模拟砖砌体开裂中闭合及开口剪力传递系数的建议值;利用这些结果,分别建立了带约束(构造柱、圈梁等)和不带约束砌体墙的有限元模型,进而分析了他们在单调荷载以及低周往复荷载作用下的抗震性能.结果表明,与不带约束的墙体相比,带约束墙体在单调水平荷载作用下的初裂性能、极值荷载和延性都有很大的提高,在低周往复荷载作用下其耗能能力得到了改善.所得结果可供相应结构抗震设计的参考.  相似文献   

7.
This paper deals with the results of cyclic load tests on masonry walls performed for the purpose of evaluation of in-plane shear behaviour and identification of shear strength, stiffness and energy dissipation. Eight walls in two series were assembled in laboratory conditions. The first series consisted of four unreinforced masonry walls constructed from solid clay bricks and lime mortar. The walls from the second series were strengthened by application of RC jackets on both sides. These were constructed of the same material and were characterized by the same geometry properties and vertical load levels as those of the walls from the first series. The main goal of the tests was to compare the behaviour of the unreinforced and strengthened walls under cyclic horizontal load. The results from the tests showed that the application of the strengthening method contributed to a significant improvement of the shear resistance of the jacketed walls. Analytical models were used to predict the shear resistance of the walls. Good agreement with the experimental results was obtained with a model based on tensile strength of masonry.  相似文献   

8.
The results of shaking table tests of a series of 1:5 scale masonry building models have been used for the assessment of values of structural behavior factor q for masonry structures, seismic force reduction factors proposed for the calculation of design seismic loads by Eurocode 8, European standard for the design of structures for earthquake resistance. Six models have been tested, representing prototype buildings of two different structural configurations and built with two different types of masonry materials. The study indicated that the reduction of seismic forces for the design depends not only on the type of masonry construction system, but also on structural configuration and mechanical characteristics of masonry materials. It has been also shown that besides displacement and energy dissipation capacity, damage limitation requirement should be taken into account when evaluating the values of behavior factor. On the basis of analysis of experimental results a conclusion can be made, that the values at the upper limit of the proposed range of values of structural behavior factor q for unreinforced and confined masonry construction systems are adequate, if pushover methods are used and the calculated global ductility of the structure is compared with the displacement demand. In the case where elastic analysis methods are used and significant overstrength is expected, the proposed values are conservative. However, additional research and parametric studies are needed to propose the modifications.  相似文献   

9.
This paper describes and analyses the performance of two structural strengthening solutions for rubble stone masonry walls. The strengthening solutions are characterised by: sprayed micro-concrete steel reinforced layers on both lateral faces of the walls, with transversal steel ties through the thickness of the specimens, not in contact with the base of the loading systems; sprayed micro-concrete steel reinforced layers on lateral faces of the specimens, without transversal steel ties but in contact with the base of the loading systems. For the first solution three specimens were tested under axial compression load and three under compression-shear load, and for the second solution three specimens were tested under axial compression load. The results are compared with unstrengthened (reference) specimens. Strengthening solutions of this nature have been used in the rehabilitation of old masonry walls in Portugal, particularly in Lisbon downtown, and in the rehabilitation of some Azores buildings after the 1998 earthquake.  相似文献   

10.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In the seismic retrofit of existing masonry constructions, global interventions are often needed to inhibit the onset of local mechanisms and to engage the whole building box-like structural behaviour. Such interventions are represented by perimeter ties and roof and floor diaphragms. This paper considers the roof diaphragm strengthening solution and investigates the use of stud connections securing the roof thin-folded shell to the perimeter walls. Stud connections serve the dual purpose of collecting and transferring the out-of-plane inertia forces of the masonry walls to the roof diaphragm, as well as transferring the diaphragm reaction forces to the shear walls. Specific detailing of the stud connection and the adoption of an improved lime-mortar overlay on the top of the masonry walls are proposed to improve the connection strength; without such improvements, the connection capacity would be jeopardised by the reduced shear resistance of the masonry wall due to the absence of significant vertical confining action at the roof level. The intervention entirely changes the behaviour of the connection and significantly reduces shear stresses on the masonry wall. The structural behaviour of the connection is analysed and discussed. Emphasis is made on the conceptual design of laboratory and in-field test procedures and testing frames in order to replicate the boundary conditions in real applications. In-situ tests may help during the design of the roof thin-folded shell system and allow for the efficiency assessment of the connections prior to the final intervention, thereby proving the actual feasibility of the retrofit solution.  相似文献   

12.
A non-linear finite element model for plain masonry structures under lateral static loads and seismic base inputs is presented. Three super-imposed elasto-plastic shear elements are used in order to approximate the typical force-displacement curve for masonry. Material properties are identified with respect to results of shear tests on single piers. Modelling of entire structures is then performed and the numerical results are satisfactorily checked against the experimental outputs of static and shaking table tests of simple 1 and 2 storey buildings. The out of plane behaviour of walls is accounted for by means of a simplified method.  相似文献   

13.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

14.
The conservation and rehabilitation of monuments is a matter of important investigation, and the need for accurate structural analysis, capable of effectively predicting the structural behaviour of this type of constructions, under static and dynamic loads, is increasing. Currently there are numerous computational methods and tools, supported by different theories and strategies with different levels of complexity, computation time and cost which are available to perform such analyses. A complex analysis is not always synonym of a better result and the choice of a method over another depends mostly on the purpose of the analysis. This work aims at evaluating the capacity of a non linear continuum damage model (Faria et al. in Int J Solids Struct 35(14):1533–1558, 1998), originally developed for concrete structures, to simulate the behaviour of stone masonry structures. In particular, the seismic response of an old stone masonry construction, the Gondar church, is analysed considering different levels of geometrical and material complexity. The verification and calibration procedures use the experimental results from tests performed on stone masonry walls at the Laboratory for Earthquake and Structural Engineering of the Faculty of Engineering of Porto University and from other tests found in the bibliography (Vasconcelos in Experimental investigations on the mechanics of stone masonry: Characterization of granites and behaviour of ancient masonry shear walls. PhD Thesis, Universidade do Minho, Guimar?es, Portugal, 2005). The results are compared, assessing the differences and the importance of using complex tools, such as the continuum damage model, to better simulate and understand the global behaviour of such constructions.  相似文献   

15.
梁斌  张海  姚新强  高武平  陈贺 《地震工程学报》2020,42(4):856-861,947
砖砌体结构是农村传统农居建筑的主要结构形式,如何精确评价其抗震能力具有重要的研究意义。目前既有传统农居中,20世纪80、90年代砖砌体结构仍是其重要的组成部分。为研究既有传统砖砌体结构的抗剪性能,首先对水泥砂浆、白灰砂浆、炉渣砂浆、黄泥砂浆4种典型砂浆开展抗压强度试验;然后对4种典型砂浆砌筑的砌体进行沿通缝抗剪强度试验,通过与传统老旧红砖砌体抗剪强度的平均值和公式值进行对比,对砌体抗剪强度计算公式进行修正后得到修正公式;最后对比修正值、标准值和设计值,对传统农居进行准确的砖砌体抗剪强度评估。本项研究主要为传统农居砖砌体结构的抗震性能评估、抗震加固以及抗震设计提供技术支持与科学依据。  相似文献   

16.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
为研究在结构前纵墙底层部位增设翼柱对底商多层砌体房屋抗倒塌性能的影响,分别设计了一个1/5缩尺比例的普通底商多层砌体房屋及增设翼柱的砌体房屋模型分别进行振动台试验研究,对比分析各模型的破坏过程、加速度放大系数、相对位移及典型位置应变等参数。结果表明,在同样的地震动输入下,带有翼柱的底商多层砌体房屋破坏程度、层间相对位移及层间位移角均明显低于普通底商多层砌体房屋,带有翼柱的底商多层砌体房屋抗倒塌性能显著提高。  相似文献   

19.
The present paper aims to contribute to the knowledge concerning the seismic assessment of load bearing masonry buildings with reinforced concrete slabs. The final goal of the present research was to propose a simple, yet accurate, methodology to assess the seismic safety of existing masonry buildings. The methodology here presented was based on the so-called ICIST/ACSS methodology with major improvements such as the extension to load bearing masonry wall buildings and the consideration of the effects of one of the most common strengthening solutions for masonry walls, here referred to as reinforced plastering mortar, as well as the possibility of considering four levels of increasing refinement: global, by alignment, by wall panel and by wall element. An extended research was performed on the existing methodologies to evaluate the seismic structural risk of load bearing masonry buildings, briefly describing methodologies similar to the one proposed, namely all of those that have in common the fact that they are based in the physical comparison between the resisting and acting shear forces at all storeys and along the two orthogonal horizontal directions. A case study is presented to check the applicability of the proposed methodology. The case study showed that the proposed methodology is relatively simple to apply and has a sufficiently good accuracy when compared with alternative methodologies. The degree of refinement of the analysis (global, by alignment, by wall panel and by wall element) must be taken into consideration and successively more complex analyses may be required when the results of simpler analyses are inconclusive.  相似文献   

20.
Typical low-rise masonry buildings consist of unreinforced masonry (URM) walls covered with various timber roof configurations generally supported or finished by masonry gables. Post-earthquake observations and experimental outcomes highlighted the large vulnerability of the URM gables to the development of overturning mechanisms, both because of the inertial out-of-plane excitation and the in-plane timber diaphragm deformability. This paper presents the static and dynamic experimental seismic performance of three full-scale roofs tested via quasi-static cyclic and shake table tests. Two of them were tested as part of a whole full scale one-storey and two-storey building. A single-degree-of-freedom (SDOF) numerical model is calibrated against experimental data and proposed for the analysis of this roof typology's dynamic behaviour. Several sets of analyses were conducted to assess the vulnerability of these structural components and to study the effect of the whole building's characteristics (eg, number of storeys and structural stiffness and strength) on the seismic performance of this roof typology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号