首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

2.
In this study, a solution model is proposed to obtain input ground motion datasets compatible with given design spectra based on meta-heuristic harmony search algorithm. The utility of the solution model is demonstrated by generating ground motion datasets matching the Eurocode-8 design spectra for different soil types out of an extensive database of recorded motions. A total of 352 records are selected from the Pacific Earthquake Engineering Center (PEER) Strong Motion Database based on magnitude, distance, and site conditions to form the original ground motion domain. Then, the proposed harmony search based solution algorithm is applied on the pre-selected 352 time-series to obtain the ground motion record sets compatible with design spectra. The results demonstrate that the proposed HS based solution model provides an efficient way to develop input ground motion record sets that are consistent with code-based design spectra.  相似文献   

3.
杜永峰  黄小宁  李慧 《地震工程学报》2018,40(5):879-882,896
利用基于性能的结构可靠度分析方法,对基础隔震钢筋混凝土框剪结构进行分析研究。选取20条实际地震动记录,以0.2g为步长对结构地震动参数PGA进行调幅后,建立了140个结构-地震动样本空间。选取上部结构的最大层间位移角、隔震层位移为量化指标,对每一个样本进行动力非线性时程分析后,将结构响应进行统计得到结构在各地震动强度下超越极限破坏状态的概率,将其绘制成基础隔震钢筋混凝土框剪结构的易损性曲线并利用整体可靠度方法分析结构发生倒塌的可靠度指标。该方法直观地反映了结构发生倒塌的概率,为结构的地震损失评估提供依据。  相似文献   

4.
陈波  谢俊举  温增平 《地震学报》2013,35(2):250-261
研究了具有不同自振特性的建筑结构在近断层速度脉冲型及非速度脉冲型地震动作用下的结构层间变形分布,揭示了近断层速度脉冲对工程结构地震响应的特殊影响. 从汶川MS8.0地震近断层强震记录中选取两组典型速度脉冲型记录和非脉冲型记录, 根据确定的目标地震动强度水平,利用时域叠加小波函数法对选择的强震记录进行调整, 使之与目标地震动水平对应的加速度反应谱保持一致, 以此作为结构地震反应分析的地震动输入. 选取具有不同自振特征的3层、11层和20层典型钢筋混凝土框架结构, 建立有限元分析模型, 分别计算在速度脉冲型与非速度脉冲型记录作用下这些结构层间变形分布. 研究表明,速度脉冲型记录与非速度脉冲型记录作用下结构层间变形有明显差异, 且与结构自振特征有关.就低层结构的层间变形而言, 非速度脉冲型记录的影响较速度脉冲型记录的影响大. 随着结构自振周期的增加, 高阶振型的影响更加明显. 与非速度脉冲型记录相比,速度脉冲型记录的结构层间位移反应中值及离散程度较大. 速度脉冲型记录更容易激发高层结构的高阶振型, 产生较大的层间位移反应. 非速度脉冲型记录对中低层结构层间变形影响较大.因此, 在开展近断层结构地震影响评价时, 应考虑近断层速度脉冲的影响.   相似文献   

5.
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.  相似文献   

6.
This paper examines the distribution of seismic drift demands in multi-storey steel moment frames designed to the provisions of Eurocode 8, with due account of the frequency content of ground motion. After providing an overview of current design rules, selected results from a detailed parametric investigation into inelastic drift demands are presented and discussed. The study includes extensive incremental dynamic analyses covering a wide range of structural characteristics and a large suite of ground motion records. The mean period is adopted in this work as a measure of the frequency content of ground motion. Prediction models for maximum global and inter-storey drift demands are presented and shown to be primarily affected by the fundamental-to-mean period ratio and the behaviour factor. Particular attention is given in this paper to the influence of the relative storey stiffness ratio on the distribution of drift demands over the height of the structure. In order to achieve a comparatively uniform drift distribution, a target relative storey stiffness ratio, incorporating the structural and ground motion characteristics, is proposed for design purposes. Finally, the implications of the findings on typical design procedures are highlighted, and possible improvements in codified guidance are discussed.  相似文献   

7.
The effect of peak ground velocity (PGV) on single‐degree‐of‐freedom (SDOF) deformation demands and for certain ground‐motion features is described by using a total of 60 soil site records with source‐to‐site distances less than 23 km and moment magnitudes between 5.5 and 7.6. The observations based on these records indicate that PGV correlates well with the earthquake magnitude and provides useful information about the ground‐motion frequency content and strong‐motion duration that can play a role on the seismic demand of structures. The statistical results computed from non‐linear response history analyses of different hysteretic models highlight that PGV correlates better with the deformation demands with respect to other ground motion intensity measures. The choice of PGV as ground motion intensity decreases the dispersion due to record‐to‐record variability of SDOF deformation demands, particularly in the short period range. The central tendencies of deformation demands are sensitive to PGV and they may vary considerably as a function of the hysteretic model and structural period. The results provided in this study suggest a consideration of PGV as a stable candidate for ground motion intensity measure in simplified seismic assessment methods that are used to estimate structural performance for earthquake hazard analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Evaluation of the degrees of structural damage suffered by high‐rise residential buildings after being subjected to strong ground motions is extremely important to the development of life continuity planning for building residents. However, these evaluations cannot be based on strong‐motion records alone, because earthquake observation equipment is not installed in most such buildings in Japan. In this study, we propose simple equations for estimating the stiffness degradation rate and the peak inter‐story drift ratio (PIDR) by using ambient vibration records instead of strong‐motion records when high‐rise RC buildings are subjected to a severe earthquake. More specifically, we propose one equation that relates the square root of the stiffness degradation rate, which is the ratio of natural frequencies at the maximum response to the preliminary tremor response (elastic state), in strong‐motion records with the ratio of natural frequencies identified from ambient vibrations before and after damage was suffered. We also propose an equation that relates the PIDR with the stiffness degradation rate on the basis of the stiffness‐degrading bilinear restoring force characteristic derived from the strong‐motion records of 13 high‐rise buildings for the 1995 Hyogoken‐Nanbu Earthquake (Mw 6.9) and the 2011 Tohoku‐Oki Earthquake (Mw 9.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper summarizes results of a comprehensive analytical study aimed at evaluating the amplitude and heightwise distribution of residual drift demands in multi‐storey moment‐resisting frames after earthquake excitation. For that purpose, a family of 12 one‐bay two‐dimensional generic frame models was subjected to an ensemble of 40 ground motions scaled to different intensities. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record‐to‐record variability in the estimation of residual drift demands. The results were statistically processed in order to evaluate the influence of ground motion intensity, number of stories, period of vibration, frame mechanism, system overstrength, and hysteretic behaviour on central tendency of residual drift demands. In addition, a special emphasis was given to evaluate the uncertainty in the estimation of residual drift demands. Results of incremental dynamic analyses indicate that the amplitude and heightwise distribution of residual drift demands strongly depends on the frame mechanism, the heightwise system structural overstrength and the component hysteretic behaviour. An important conclusion for performance‐based assessment is that the evaluation of residual drift demands involves significantly larger levels of uncertainty (i.e. record‐to‐record variability) than that of maximum drift demands, which suggests that this variability and corresponding uncertainty should be explicitly taken into account when estimating residual drift demands during performance‐based seismic assessment of frame buildings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
本文给出了唐山地区强震动记录应用研究的两个实例,提出了建筑结构采用时程分析时选用强震动记录的原则和方法,通过对唐山地区强震动记录的分析处理,得到了其峰值加速度及加速度反应谱,确定了本地区进行弹性时程分析时选用的强震动记录;研究了局部场地条件对地震动影响的唐山响堂三维强震动观测台阵,以唐山响堂台阵2号测井(地下32m)的基岩强震动作为输入,通过2号测井的土层剖面,利用2个一维土层地震反应分析程序,分别计算得到地表的峰值加速度和加速度反应谱,并把计算结果与同次地震相应的地表强震动记录峰值加速度与加速度反应谱进行了对比分析。  相似文献   

11.
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration-and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or near-collapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.  相似文献   

12.
Scalar and vector intensity measures are developed for the efficient estimation of limit‐state capacities through incremental dynamic analysis (IDA) by exploiting the elastic spectral shape of individual records. IDA is a powerful analysis method that involves subjecting a structural model to several ground motion records, each scaled to multiple levels of intensity (measured by the intensity measure or IM), thus producing curves of structural response parameterized by the IM on top of which limit‐states can be defined and corresponding capacities can be calculated. When traditional IMs are used, such as the peak ground acceleration or the first‐mode spectral acceleration, the IM‐values of the capacities can display large record‐to‐record variability, forcing the use of many records to achieve reliable results. By using single optimal spectral values as well as vectors and scalar combinations of them on three multistorey buildings significant dispersion reductions are realized. Furthermore, IDA is extended to vector IMs, resulting in intricate fractile IDA surfaces. The results reveal the most influential spectral regions/periods for each limit‐state and building, illustrating the evolution of such periods as the seismic intensity and the structural response increase towards global collapse. The ordinates of the elastic spectrum and the spectral shape of each individual record are found to significantly influence the seismic performance and they are shown to provide promising candidates for highly efficient IMs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes the three‐dimensional nonlinear analysis of six 19‐storey steel moment‐frame buildings, designed per the 1997 Uniform Building Code, under strong ground motion records from near‐source earthquakes with magnitudes in the range of 6.7–7.3. Three of these buildings possess a reentrant corner irregularity, while the remaining three possess a torsional plan irregularity. The records create drift demands of the order of 0.05 and plastic rotation demands of the order of 4–5% of a radian in the buildings with reentrant corners. These values point to performance at or near ‘Collapse Prevention’. Twisting in the torsionally sensitive buildings causes the plastic rotations on the moment frame on one face of the building (4–5% of a radian) to be as high as twice of that on the opposite face (2–3% of a radian). The asymmetric yield pattern implies a lower redundancy in the lateral force‐resisting system as the failure of the heavily loaded frame could result in a total loss of resistance to torsion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

15.
结构Pushover分析的侧向力分布及高阶振型影响   总被引:52,自引:8,他引:44  
Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法,已被引入我国新的建筑结构抗震设计规范。侧向力分布的选取是结构Pushover分析中的一个关键问题,尤其高阶振型影响显著时其选取直接影响Pushover分析的结果。本文通过拟合规范反应谱,挑选了适用Ⅱ类场地的4条地震动记录和4条人工波,对比了典型地震动下非线性时程分析和采用5种不同侧向力分布的Pushover分析的5层、10层和15层钢筋混凝土结构在不同地震动强度时的反应。通过结构振型参与系数量化了各个结构的高阶振型的影响。研究发现,随着结构层数的增加和地震动强度的增加高阶振型的影响变大,侧向力的选取变得十分重要。本文对在高阶振型影响下钢筋混凝土框架结构的Pushover分析中侧向力的选取提出了建议。  相似文献   

16.
樊剑  曾志和 《地震学报》2010,32(6):733-743
利用谐小波变换对实际强震记录的时变谱进行估计,并统计分析了远场3类不同场地上地震波的时变谱特征,分析发现对于硬场地上的远场地震波在时域内平稳段较短,下降段衰减较快,而在频域内则具有较大的中心频率和较宽的频带.利用均匀调制非平稳模型和时变修正Kanai-Tajimi非平稳模型模拟地震波的时变谱,把非线性函数的参数识别问题转化成求解无约束优化问题,利用拟牛顿迭代法求得最优解,得到3类不同场地上这两种模型的参数具体取值以及参数函数集的具体表达式.为了定量地确定模拟模型的精度,定义了误差函数,验证了所提时变谱参数识别方法的精度,给出了与建筑抗震规范相对应的不同场地不同烈度下多遇和罕遇地震的谱强度因子的大小.最后提出了利用求解时变线性微分方程组来合成非平稳地震波的方法.  相似文献   

17.
The damage distribution in Adra town (south‐eastern Spain) during the 1993 and 1994 Adra earthquakes (5.0 magnitude), that reached a maximum intensity degree of VII (European Macroseismic Scale (EMS scale)), was concentrated mainly in the south‐east zone of the town and the most relevant damage occurred in reinforced concrete (RC) buildings with four or five storeys. In order to evaluate the influence of ground condition on RC building behaviour, geological, geomorphological and geophysical surveys were carried out, and a detailed map of ground surface structure was obtained. Short‐period microtremor observations were performed in 160 sites on a 100m × 100m dimension grid and Nakamura's method was applied in order to determine a distribution map of soil predominant periods. Shorter predominant periods (0.1–0.3 s) were found in mountainous and neighbouring zones and larger periods (greater than 0.5 s) in thicker Holocene alluvial fans. A relationship T = (0.049 ± 0.001)N, where T is the natural period of swaying motion and N is the number of storeys, has been empirically obtained by using microtremor measurements at the top of 38 RC buildings (ranging from 2 to 9 storeys). 1‐D simulation of strong motion on different soil conditions and for several typical RC buildings were computed, using the acceleration record in Adra town of the 1993 earthquake. It is noteworthy that all the aforementioned results show the influence of site effects in the degree and distribution of observed building damage. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
基于日本KiK-Net、K-Net地震台网和太平洋地震工程中心(PEER)的14 713条地震动记录,比较了俯冲带地区浅壳上地幔地震、板内地震和板间地震的水平向地震动加速度反应谱阻尼修正系数(DMF)和位移反应谱阻尼修正系数(DMF)的差异,并进行了5%置信水平下的假设检验,探究了俯冲带地区不同地震类型对DMF的影响。结果显示:在大多数谱周期,不同地震类型的DMF存在统计意义上的显著差异;在低阻尼比中短周期时,加速度谱DMF和位移谱DMF基本相同;在高阻尼比长周期时,不同地震类型的加速度谱DMF差异大于位移谱DMF差异。研究表明:俯冲带地震水平向地震动DMF需要考虑不同地震类型的影响。  相似文献   

19.
针对钢筋混凝土高层建筑抗震时程分析输入地震波选择问题,以《建筑抗震设计规范》(GB 50011-2016)设计谱为目标谱,将满足谱匹配原则的加权调幅选波方法与国内学者建议的其它输入地震波选择方法进行了对比研究。以3栋钢筋混凝土高层建筑(15层、30层和44层)为实例,针对8度罕遇地震作用和Ⅱ类场地条件,将上述方法建议的各7条地震波输入结构进行弹塑性时程分析。以结构最大层间位移角均值沿楼层分布为比较参数。结果表明:加权调幅法可用于钢筋混凝土高层建筑抗震时程分析,可以较好地降低结构地震反应均值的离散性。在8度罕遇地震作用条件下,以不同学者建议选择的地震波为输入,高层建筑时程分析结果仍呈现出较大的不同。  相似文献   

20.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号