首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crustal and upper mantle structure of the northwestern North Island of New Zealand is derived from the results of a seismic refraction experiment; shots were fired at the ends and middle of a 575 km-long line extending from Lake Taupo to Cape Reinga. The principal finding from the experiment is that the crust is 25 ± 2 km thick, and is underlain by what is interpreted to be an upper mantle of seismic velocity 7.6 ± 0.1 km s−1, that increases to 7.9 km s−1 at a depth of about 45 km. Crustal seismic velocities vary between 5.3 and 6.36 km s−1 with an average value of 6.04 km s−1. There are close geophysical and geological similarities between the north-western North Island of New Zealand and the Basin and Range province of the western United States. In particular, the conditions of low upper-mantle seismic velocities, thin crust with respect to surface elevation, and high heat-flow (70–100 mW m−2) observed in these two areas can be ascribed to their respective positions behind an active convergent margin for about the past 20 Myr.  相似文献   

2.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

3.
Summary. Results from eight seismic refraction lines, 35–90 km long, in the Bristol Channel area are presented. The data, mostly land recordings of marine shots, have been interpreted mainly by ray-tracing and time-term modelling. Upper layer velocities through Palaeozoic rocks usually fall within the range 4.8–5.2 km s−1. Below the Carboniferous Limestone with a normal velocity of 5.1–5.2 kms−1, the Old Red Sandstone with a velocity of 4.7–4.8 kms−1 acts as a low velocity layer, as do parts of the underlying Lower Palaeozoic succession. In the central South Wales/Bristol Channel area and the Mendips, a 5.4–5.5 km s−1 refractor is correlated with a horizon at or near the top of the Lower Palaeozoic succession. Under the whole area, except for north Devon, a 6.0–6.2 km s−1 basal refractor has been located and is correlated with Precambrian crystalline basement rocks. In general, this refractor deepens southwards from a series of basement highs, which existed before the major movements of the Variscan orogeny in South Wales, resulting in a southerly thickening of the pre Upper Carboniferous supra-basement sequence. In north Devon, a 6.2 km s−1 refractor at shallow depth, interpreted as a horizon in the Devonian or Lower Palaeozoic succession, overlies a deep reflector that may represent the Precambrian crystalline basement.  相似文献   

4.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

5.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

6.
Summary. A structural model of the Mid-Atlantic Ridge at 37° N is proposed on the basis of travel-time data and synthetic seismograms. At the ridge axis the crust is only 3 km thick and overlies material with an anomalously low'upper mantle'velocity of 7.2 km s−1. Crustal thickening and the formation of layer 3 and a layer with velocity 7.2–7.3 km s−1 takes place within a few kilometres of the axis, producing a 6–7 km thick crust by less than 10 km from the axis. A normal upper mantle velocity of 8.1 km s−1 exists within 10 km of the axis. Shear waves propagate across the axis, thus precluding the existence of any sizeable magma chamber at shallow depth.  相似文献   

7.
Crust and upper mantle structure of the central Iberian Meseta (Spain)   总被引:2,自引:0,他引:2  
Summary. Quarry blasts recorded along three lines on the central Iberian Meseta are used in an attempt to interpret the crustal structure. The results of the interpretation of the data, together with published surface wave and earthquake data, suggest a layered structure of the crust having the following features: the basement, in some areas covered by up to 4 km of sediments, has a P -velocity of 6.1 km s−1; a low-velocity layer, between 7 and 11 km depth, seems to exist on the basis of both P and S interpretation of seismic data; a thick middle crust of 12 km has a P -velocity of 6.4 km s−1 and overlies a lower crust with a mean P -velocity of 6.9 km s−1 and a possible slight negative gradient; the mean v p/ v s ratio for the crust is about 1.75; the Moho is reached at about 31 km depth and consists of a transition zone at least 1.5 km thick. The P -velocity of the upper mantle is close to 8.1 km s−1 and the S -velocity about 4.5 km s−1, which gives a v p /v s ratio of 1.8 for the uppermost mantle. A tentative petrological interpretation of the velocities and composition of the layers is given.  相似文献   

8.
Summary. Group velocities for first and second higher mode Rayleigh waves, in the frequency range 0.8–4.8 Hz, generated from a local earthquake of magnitude 3.7 M L in western Scotland, are measured at stations along the 1974 LISPB line. These provide detailed information about the crustal structure west of the line. The data divide the region into seven apparently homogeneous provinces. Averaged higher mode velocity dispersion curves for each province are analysed simultaneously using a linearized inversion technique, yielding regionalized shear velocity profiles down to a depth of 17 km into the upper crust. Shear wave velocity is between 3.0 and 3.4 km s−1 in the upper 2 km, with a slow increase to around 3.8 km s−1. P -wave models computed using these results agree with profiles from the LISPB and LUST refraction experiments.  相似文献   

9.
Summary. Closely spaced refraction profiling across the Whipple Mountains metamorphic core complex in southeastern California yields a complex picture of crustal structure in this region of large continental extension. A NE-directed profile, parallel to the extension direction, reveals a high-velocity mid-crustal layer (6.6–6.8 km s−1) at 16-18 km depth, bounded above and below by laterally discontinuous low-velocity zones (<6.0 km s−1). In marked contrast, a NW-directed profile shows a more uniform 6.0 km s−1 crust down to the crust-mantle boundary. The apparent contrast between these two perpendicular profiles may be related not only to a more complex geologic structure in the NW-SE direction, but also to velocity anisotropy associated with mid-crustal mylonites. Despite the differences between the two refraction profiles, both define a flat Moho at 26-27 km depth with an associated upper mantle-velocity of 7.8 km s−1. This observation is significant as it suggests that, although the amount of extension has been highly variable regionally, the crust is no thinner beneath the Whipple Mountains (where extension has been extreme) than the surrounding mountain ranges. Such an observation requires either that the crust was considerably thicker prior to extension, or that lateral flow in the lower crust and/or inflation of the crust via magmatism occurred contemporaneous with extension.  相似文献   

10.
Summary. The seismic structure has been measured to a depth of about 3 km along a 30 km seismic profile in east central Ireland. This profile is unusual in that it is the S -wave velocity—depth structure that has been measured to a degree of precision more normally associated with P -wave results. One reason for this is that the sources used were quarry blasts which generated strong S -waves and short-period surface waves but rather weak P -waves.
The results show a layer of Carboniferous limestone with shear velocity 2.65 km−1 s overlying a layer with a velocity of 3.06 km s−1. This second layer was interpreted as Lower Palaeozoic strata (Silurian/Ordovician) since this velocity was evident in an inlier seen at the surface at the northern end of the line. A third refraction horizon, shear velocity 3.45 km s−1 and displaying a basinal structure, was also recognized. This may be Cambrian or Precambrian basement.  相似文献   

11.
The first detailed deep seismic refraction study in the Bransfield Strait, West Antarctica, using sensitive OBSs (ocean bottom seismographs) was carried out successfully during the Antarctic summer of 1990/1991. The experiment focused on the deep crustal structure beneath the axis of the Bransfield Rift. Seismic profile DSS-20 was located exactly in the Bransfield Trough, which is suspected to be a young rift system. Along the profile, five OBSs were deployed at spacings of 50-70 km. 51 shots were fired along the 310 km profile. This paper gives the first presentation of the results. A detailed model of the crustal structure was obtained by modelling the observed traveltimes and amplitudes using a 2-D ray-tracing technique. The uppermost (sedimentary?) cover, with velocities of 2.0-5.5 km s−1, reaches a depth of up to 8 km. Below this, a complex with velocities of 6.4-6.8 km s−1 is observed. The presence of a high-velocity body, with V p= 7.3-7.7 km s−1, was detected in the 14-32 km depth range in the central part of the profile. These inhomogeneities can be interpreted as a stage of back-arc spreading and stretching of the continental crust, coinciding with the Deception-Bridgeman volcanic line. Velocities of 8.1 km s−1, characteristic of the Moho, are observed along the profile at a depth of 30-32 km.  相似文献   

12.
Summary. Travel times and waveforms of long-period SH -waves recorded at distances of 10–30° and some SS waveforms are used to constrain the upper mantle velocities down to a depth of 400km beneath both the Indian Shield and the Tibetan Plateau. the shear velocity in the uppermost mantle beneath both the Indian Shield and the Tibetan Plateau is high and close to 4.7 km s−1. the Indian Shield has a fairly thick high velocity lid, and the mean velocity between 40 and 250 km is between 4.58 and 4.68 km s−1. In contrast, S -wave travel times and waveforms of S -waves, as well as a few for SS , show that the mean velocity between 70 and 250km beneath the central and northern part of the Tibetan Plateau is slower by 4 per cent or more than that beneath the Indian Shield and probably is between 4.4 and 4.5km s−1. No large differences in the structure of the two areas below 250 km are required to explain both the arrival times and the waveforms of SH phases crossing Tibet or the Indian Shield. These results show that the structure of Tibet is not that of a shield and imply that the Indian plate is not underthrusting the whole of the Tibetan Plateau at the present time.  相似文献   

13.
In order to investigate the velocity structure, and hence shed light on the related tectonics, across the Narmada–Son lineament, traveltimes of wide-angle seismic data along the 240 km long Hirapur–Mandla profile in central India have been inverted. A blocky, laterally heterogeneous, three-layer velocity model down to a depth of 10 km has been derived. The first layer shows a maximum thickness of the upper Vindhyans (4.5 km s−1 ) of about 1.35 km and rests on top of normal crystalline basement, represented by the 5.9 km s−1 velocity layer. The anomalous feature of the study is the absence of normal granitic basement in the great Vindhyan Graben, where lower Vindhyan sediments (5.3 km s−1 ) were deposited during the Precambrian on high-velocity (6.3 km s−1 ) metamorphic rock. The block beneath the Narmada–Son lineament represents a horst feature in which high-velocity (6.5 km s−1 ) lower crustal material has risen to a depth of less than 2 km. South of the lineament, the Deccan Traps were deposited on normal basement during the upper Cretaceous period and attained a maximum thickness of about 800 m.  相似文献   

14.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

15.
Recent high-resolution observations of crustal movements have revealed silent slip events (SSEs) with propagation velocities of around 10–15 km d−1 and with intervals of 3–14 months along the deeper parts of the Cascadia and Nankai subduction zones. This study develops 2-D and 3-D models of these short-interval SSEs considering the frictional behaviour that was confirmed experimentally by Shimamoto for the unstable–stable transition regime. To represent this frictional behaviour, a small cut-off velocity to an evolution effect is introduced in a rate- and state-dependent friction law. When the cut-off velocity to the evolution effect is significantly smaller than that to a direct effect, steady-state friction exhibits velocity weakening at low slip velocities and velocity strengthening at high slip velocities. At the deeper Cascadia and Nankai subduction interfaces, the pore pressure is inferred to be high because of the dehydration of materials in the descending plate. Under conditions where the pore-fluid pressure is nearly equal to the lithostatic pressure and the critical weakening displacement is very small, short-interval SSEs with propagation velocities and slip velocities of 4–8 km d−1 and  2 − 4 × 10−7  m s−1, respectively, can be reproduced. The propagation velocity of short-interval SSEs is in proportion to the slip velocity. The results also show that during the nucleation process of large earthquakes, the occurrence of short-interval SSEs becomes irregular because of the accelerated slips that occur at the bottom of the seismogenic zone. Our results suggest that monitoring of short-interval SSEs might be useful for forecasting the main earthquakes.  相似文献   

16.
Summary. We present evidence for a seismic discontinuity near 200km depth (the Lehmann Discontinuity) under the passive continental margin of northwest Australia, where continental lithosphere merges into oceanic lithosphere. The velocity contrast across the discontinuity is 0.2–0.3 km s-1, and is similar to the contrast across discontinuities at similar depths in seismic models for purely continental paths to the east under central Australia. The discontinuity has been shown to be present under continents, oceans and now at continental margins, and is probably a worldwide feature.  相似文献   

17.
Summary. The Hatton Bank passive continental margin exhibits thick seaward dipping reflector sequences which consist of basalts extruded during rifting between Greenland and Rockall Plateau. Multichannel seismic reflection profiling across the margin reveals three reflector wedges with a maximum thickness near 7 km, extending from beneath the upper continental slope to the deep ocean basin. We present results of the velocity structure within the dipping reflector sequences at eight locations across the margin, interpreted by synthetic seismogram modelling a set of multichannel expanding spread profiles parallel to the margin. At the top of some reflector sequences, we observe a series of 100 m thick high- and low-velocity zones, which are interpreted as basalt flows alternating with sediments or weathered and rubble layers. At the profile locations, the base of the dipping reflectors correlates with P -wave velocities near 6.5 km s−1. However, elsewhere the reflectors appear to extend significantly deeper than the inferred 6.5 km s−1 velocity contour, indicating that the velocity structure may not be controlled solely by lithological boundaries but also by metamorphic effects. Shear-waves were observed on two lines, permitting the calculation of Poisson's ratio. The decrease in Poisson's ratio from 0.28 to near 0.25 in the upper 5 km of crust may also indicate the effect of metamorphism on seismic properties, or alternatively may be explained by crack closure under load.  相似文献   

18.
Summary. As part of integrated marine geophysical studies in the Western Somali Basin, we performed 118 sonobuoy experiments to define better the crustal structure of the margins and basin created by the separation of Madagascar and Africa. After using T 2/ X 2, conventional slope-intercept methods, and slant-stacked t-p techniques to analyse the data, we combined our solutions with all previous velocity information for the area. Velocity functions were derived for the sediment coiumn, and we detected a high-velocity (4.58 ± 0.29 km s–1) sediment layer overlying acoustic basement. We confirmed that the crust is indeed seismically oceanic, and that it may be considered either in terms of a layered model – layers 2B (5.42 ± 0.19 km s–1), 2C (6.23 ± 0.22 km s–1), 3 (7.03 ± 0.25 km s–1), and mantle (7.85 ± 0.32 km s–1) were identified – or a more complex gradient model in which layer 2 is marked by a steeper velocity gradient than underlying layer 3. Integrated igneous crustal thicknesses (1.62 ± 0.22 s, 5.22 ± 0.64 km) are significantly less than what is considered normal. We present a revised seismic transect across the East African margin, as well as total sediment thickness, depth to basement and crustal thickness maps.  相似文献   

19.
Summary Recordings from a crustal seismic experiment, which was conducted in the Yellowknife area in 1966, were used for calibration of the Yellow-knife seismic array. In the immediate vicinity of the array the crust is found to be very uniform. A superficial layer with an intercept time of 0–172 ± 0–012s and unknown velocity is underlain by a crust with a P wave velocity of 6.04 ± 0–01 km s-1 near the top: assuming this velocity constant throughout the second layer, the total thickness of the crust is about 34 ± 2 km. The Mohorovicic discontinuity is horizontal under the array within the resolution of this experiment and the apparent Pn velocity is 8.15 km s-1. At a distance of a few tens of kilometres the crustal uniformity breaks down. The distances are such that, for most teleseismic signals, the effect of these in homogeneities should be negligible.  相似文献   

20.
Summary. Results are presented from five long seismic profiles in South Wales based on recordings of quarry blasts. Interpretation by means of planar layer modelling, time term analysis and ray tracing provides information on depths to an assumed Precambrian igneous/metamorphic basement and on the thickness of overlying concealed Lower Palaeozoic (? and Upper Proterozoic) sequences. Basement culminations are identified under the western part of the South Wales coalfield and in the Carmarthen Bay area; under parts of the coalfield the Lower Palaeozoic must be thin or absent. The basement is at a depth of 5 km or more under Cower and the Vale of Glamorgan and in adjacent parts of the Bristol Channel, and thick Lower Palaeozoic sequences must be present in these areas. The basement velocity of 6.0–6.3 km s−1 compares well with the low upper crustal velocities encountered along adjacent parts of the lithospheric seismic profile across Britain (LISPB 1974).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号