首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Heat flow values were calculated from direct measurements of temperature and thermal conductivity at thirteen sites in the Arkansas-Missouri Ozark Plateau region. These thirteen values are augmented by 101 estimates of heat flow, based on thermal conductivity measurements and temperature gradients extrapolated from bottom-hole temperatures. The regional heat flow profile ranges from 9 mW m−2 to over 80 mW m−2, but at least two distinct thermal regimes have been identified. Seven new heat flow determinations are combined with three previously published values for the St. Francois Mountains (SFM), a Precambrian exposure of granitic and rhyolitic basement rocks, average 47 mW m−2. Radioactive heat production of 76 samples of the exposed rocks in the SFM averages 2.4 μW m−2 and a typical continental basement contribution of 14 mW m−2 is implied. Conversely, the sedimentary rock sequence of the plateau is characterized by an anomalously low heat flow, averaging approximately 27 mW m−2. Groundwater transmissivity values that are based on data from 153 wells in deep regional aquifers demonstrate an inverse relationship to the observed heat flow patterns. The areas of high transmissivity that correspond to areas of low total heat flux suggest that the non-conservative vertical heat flow within the Ozark sedimentary sequence can be attributed to the effects of groundwater flow.  相似文献   

2.
Michigan basin regional ground water flow discharge to three Great Lakes   总被引:1,自引:1,他引:0  
Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 50% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only approximately 1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only approximately 2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas.  相似文献   

3.
The bomb tritium (3H) distribution patterns in the aquifer beneath an abandoned landfill at the Canadian Forces Base (CFB) Borden, Ontario, and in a sandy aquifer at Whiteshell Nuclear Research Establishments (WNRE) Pinawa, Manitoba, all in Canada, were delineated in great detail. A sampling and monitoring network of multilevel samplers and bundle piezometers were used. The directions of groundwater flow were established, and the boundary between the tritiated and non-tritiated zones of the two aquifers were closely demarcated. Using a cumulative mass balance method, the3H input mass into the aquifers was compared with the3H mass in groundwater storage to estimate the percentages of annual groundwater recharge from 1953 to 1978. Two recharge calculations for theeffective recharge zone and thetotal recharge area of the aquifers as established from the flownet analysis, and the distributions of dissolved geochemical constitutents showed that theeffective recharge zone calculations gave higher values of 30.6 cm/yr for CFB Borden and 20.1 cm/yr for WNRE while thetotal recharge areas gave lower values of 19.1 and 10.1 cm/yr for the Borden and WNRE aquifers respectively. The two recharge values provide possible minimum and maximum recharge estimates for the two study areas.  相似文献   

4.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The strategic project of economic development in the Dornogobi Province in Mongolia is dependent on water supply. Thus a comprehensive hydrogeological characterization was focused on the Upper Cretaceous multi-aquifer system north of Sainshand city. A conceptual model was developed to discover the groundwater flow pattern essential to correct the setting of the numerical model of groundwater flow created using MODFLOW to assess the natural recharge of the aquifer. The conceptualization was based on geological and hydrogeological characterization. However, the evaluation of hydrochemistry proved to be the key factor revealing the principal feature of the groundwater flow pattern, which is the presence of preferential flow zones. These zones allow for intensive transfer of relatively fresh Na(Mg,Ca)?HCO3-dominated groundwater into discharge areas, where it leaks into the Quaternary aquifer. The numerical model suggested an enormous natural recharge of 22 100 m3/d, originating in 64% of the preferential flow zones.  相似文献   

6.
Monitored groundwater level data, well logs, and aquifer data as well as the relevant surface hydrological data were used to conceptualise the hydrogeological system of the Densu Basin in Southern Ghana. The objective was to numerically derive the hydraulic conductivity field for better characterization of the aquifer system and for simulating the effects of increasing groundwater abstraction on the aquifer system in the basin. The hydraulic conductivity field has been generated in this study through model calibration. This study finds that hydraulic conductivity ranges between a low of 2 m/d in the middle sections of the basin and about 40 m/d in the south. Clear differences in the underlying geology have been indicated in the distribution of aquifer hydraulic conductivities. This is in consonance with the general assertion that the hydrogeological properties of the aquifers in the crystalline basement terrains are controlled by the degree of fracturing and/or weathering of the country rock. The transient model suggest aquifer specific storage values to range between 6.0 × 10?5 m?1 and 2.1 × 10?4 m?1 which are within acceptable range of values normally quoted for similar lithologies in the literature. There is an apparent subtle decrease in groundwater recharge from about 13% of the annual precipitation in 2005 to about 10.3% of the precipitation in 2008. The transient model was used to simulate responses of the system to annual increment of groundwater abstraction by 20% at the 2008 recharge rates for the period 2009 – 2024. The results suggest that the system will not be able to sustain this level of abstraction as it would lead to a basin wide drawdown in the hydraulic head by 4 m by the end of the prediction period. It further suggests a safe annual increment in groundwater abstraction by 5% under business as usual recharge conditions. Identification and protection of groundwater recharge areas in the basin are recommended in order to safeguard the integrity of the resource under the scenario of increased abstraction for commercial activities in the basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

8.
Fractured rock aquifers cover much of Earth's surface and are important mountain sites for groundwater recharge but are poorly understood. To investigate groundwater systematics of a fractured-dominated aquifer in Baja California Sur, Mexico, we examined the spatial patterns of aquifer recharge and connectivity using the geochemistry of springs. We evaluate a range of geochemical data within the context of two endmember hypotheses describing spatial recharge patterns and fracture connectivity. Hypothesis 1 is that the aquifer system is segmented, and springs are fed by local recharge. Hypothesis 2 is that the aquifer system is well connected, with dominant recharge occurring in the higher elevations. The study site is a small <15 km2 catchment. Thirty-four distinct springs and two wells were identified in the study area, and 24 of these sites were sampled for geochemical analyses along an elevation gradient and canyon transect. These analyses included major ion composition, trace element and strontium isotopes, δ18O and δ2H isotopes, radiocarbon, and tritium. δ18O and δ2H isotopes suggest that the precipitation feeding the groundwater system has at least two distinct sources. Carbon isotopes showed a change along the canyon transect, suggesting that shorter flowpaths feed springs in the top of the transect, and longer flowpaths discharge near the bottom. Geochemical interpretations support a combination of the two proposed hypotheses. Understanding of the connectivity and provenance of these springs is significant as they are the primary source of water for the communities that inhabit this region and may be impacted by changes in recharge and use.  相似文献   

9.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

10.
Mexico City is situated in the Valley of Mexico on the extensive lacustrine clays that overlay highly productive aquifers of both volcanic and sedimentary origin. The Valley is closed by volcanic mountains. The natural hydraulic boundary conditions associated withe mountain ranges and their relationship to the important aquifers were studied using a two-dimensional, steady-state finite-element model in cross section. Four cross sections were analysed under hydrologic conditions existing prior to the large scale pumping of the aquifers. Factors such as bulk hydraulic conductivities and regional infiltration rates were obtained from field observations and the literature to assess location of the associated groundwater divides, and the water-table in the mountains. The modeled flow patterns are consistent with the historical hydrologic records piezometric characteristics and observed surface features of the groundwater in the Basin of Mexico. From the modeling results, the groundwater recharge in the mountains is 30–50% of the mean average precipitation. Higher and lower rates result in a flow regime that is not compatible with field observations. In general the location of the divides in the mountains is displaced towards the Valley of Mexico, which influences the groundwater budget of the Valley. The water table in places is several hundred metres below ground surface, in accordance with field observations of a very thick unsaturated zone. Before major aquifer exploitation began about 50 years ago, 40–50% of the total discharge into the Valley was by upward flow through the lacustrine deposits. The best results were obtained using a subsurface distribution of hydrostratigraphic units based on recently published geological interpretations.  相似文献   

11.
We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.  相似文献   

12.
One of the most important issues for water resource management is developing strategies for groundwater modelling that are adaptable to data scarcity. These strategies are particularly important in arid and semi‐arid areas where access to data is poor and data collection is difficult, such as the Lake Chad Basin in Africa. In the present study, we establish a numerical groundwater flow model and evaluate the effects of dry and wet periods on groundwater recharge in the Chari–Logone area (96 000 km2) of the Lake Chad Basin. Boundary conditions, flow direction, sources, and sinks for the Chari–Logone local model were obtained by revising and remodelling the Lake Chad Basin regional hydrogeological model (508 400 km2) developed by the BRGM (Bureau de Recherches Géologiques et Minières) in the 1990s. The simulated aquifer water level showed good agreement with observed levels. Aquifer recharge is primarily determined by river–aquifer interactions and mostly occurs in the southern section of the study area. In wet years, groundwater recharge also occurs in the N'Djamena area. The approach we adopted provided relevant results and was useful as an initial step in more detailed modelling of the area. It also proved to be a useful method for groundwater modelling in large semi‐arid and arid regions where available data are scarce. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The Grenchen aquifer system in the Swiss Plateau was extensively investigated in order to determine the extent of groundwater contamination and to assess the natural attenuation capacity. Environmental tracer data were applied to estimate groundwater travel times, mixing ratios, and evaluate groundwater origin. Recharge is basically possible in two distinct topographical areas, the immediate vicinity of the town of Grenchen and the elevated plateau of the first Jura Mountain ridge. Groundwater dating was performed with the 3H/3He dating method and supplemented by 85Kr measurements. Stable isotope data (δ18O, δ2H) and dissolved noble gas concentrations allow the determination of the recharge temperature, which is correlated to the recharge elevation. Noble gas temperatures (NGT) decrease in the direction of groundwater flow and range from 10 to 13 °C in the upstream area of the town to 7–9 °C in the downstream river plain. This trend could suggest the admixture of water from the underlying limestone aquifer recharged under cooler infiltration conditions, e.g. at higher recharge elevations. However, it is shown in this study that the difference in NGT does not require such a recharge. Rather, increasing air temperatures over the last 40 years and the urban heat island effect could possibly explain most of the observed temperature shift. Furthermore, it is concluded that the downstream river plain is hydrologically disconnected from the upstream town area. Consequently most water from the town area is drained by the creek Witibach and recharge in the river plain is higher than previously assumed.  相似文献   

14.
Sulfur hexafluoride (SF6) is an established tracer for use in managed aquifer recharge projects. SF6 exsolves from groundwater when it encounters trapped air according to Henry's law. This results in its retardation relative to groundwater flow, which can help determine porous media saturation and flow dynamics. SF6 and the conservative, nonpartitioning tracer, bromide (Br added as KBr), were introduced to recharge water infiltrated into stacked glacial aquifers in Thurston County, Washington, providing the opportunity to observe SF6 partitioning. Br, which is assumed to travel at the same velocity as the groundwater, precedes SF6 at most monitoring wells (MWs). Average groundwater velocity in the unconfined aquifer in the study area ranges from 3.9 to 40 m/d, except in the southwestern corner where it is slower. SF6 in the shallow aquifer exhibits an average retardation factor of 2.5 ± 3.8, suggesting an air-to-water ratio on the order of 10−3 to 10−2 in the pore space. Notable differences in tracer arrival times at adjacent wells indicate very heterogeneous conductivity. One MW exhibits double peaks in concentrations of both tracers with different degrees of retardation for the first and second peaks. This suggests multiple flowpaths to the well with variable saturation. The confining layer between the upper two aquifers appears to allow intermittent connection between aquifers but serves as an aquitard in most areas. This study demonstrates the utility of SF6 partitioning for evaluating hydrologic conditions at prospective recharge sites.  相似文献   

15.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   

16.
On the evolution of the geothermal regime of the North China Basin   总被引:1,自引:0,他引:1  
Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m−2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m−2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.  相似文献   

17.
This study demonstrates the application of multivariate statistical methods in definition of groundwater recharge and discharge areas in a sedimentary basin in Ghana. Q‐mode hierarchical cluster analysis (HCA) was applied to 57 hydrochemical data from the Buem formation in the northern part of the Volta Region in Ghana. R‐mode HCA and R‐mode factor analysis were then applied to the same dataset to reveal the processes controlling the hydrochemistry of groundwater from this hydrogeological formation. Results of both the Q‐ and R‐mode analyses were backed by graphical methods. The analyses revealed two major water types, differentiated by salinity levels into four spatial groundwater associations. The characteristics of the four groundwater types are discussed. The recharge areas are characterized by Ca? HCO3 low salinity waters which evolve through rock–water interactions to Na? HCO3 high salinity waters in the discharge areas. This study finds that the hydrochemistry of groundwater from this formation is mainly controlled by the weathering of minerals, principally silicates in the aquifer matrix. The effects of the chemistry of recharging precipitation are higher in the recharge areas, while mineral weathering tends to be severe close to the discharge areas in the groundwater flow regime. All the four spatial groundwater associations have low sodium content, but salinity levels increase towards the discharge areas, such that some of wells in the discharge areas may not be acceptable for irrigation on grounds of high salinities which might affect the osmotic potentials of plants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In the southern San Juan Basin, New Mexico, strata of Permian and younger age dip gently toward the center of the basin. Most previous investigators believed that recharge to these strata occurred by precipitation on the outcrops and groundwater flowed downdip to the north and northeast. Recent water-level measurements in an undeveloped part of the basin near Prewitt, New Mexico, show that groundwater at shallow depths in alluvium and bedrock flows southward, opposite to the dip direction, and toward a major ephemeral drainage in a strike valley. North of this area, groundwater in deep bedrock aquifers does appear to flow northward. This information suggests that there are two groundwater circulation patterns; a shallow one controlled by topography and a deeper one controlled by geologic structure.Significant amounts of recharge to sandstone aquifers by infiltration through outcrops is unlikely due to the near-vertical exposures on cliffs, the gentle dip of the strata, and small annual precipitation. Numerical model results suggest that recharge to bedrock aquifers may be from downward leakage via aquitards over large areas and leakage from narrow alluvial aquifers in the subcrop area. The recharge mechanism is controlled by the hydraulic conductivity of the strata.As the flow path is controlled by hydraulic conductivity contrasts, geologic structure, and topography, contamination movement from surface impoundments is likely to be difficult to predict without a thorough hydrogeological site investigation.  相似文献   

19.
Long‐term heating of shallow urban aquifers is observed worldwide. Our measurements in the city of Cologne, Germany revealed that the groundwater temperatures found in the city centre are more than 5 K higher than the undisturbed background. To explore the role of groundwater flow for the development of subsurface urban heat islands, a numerical flow and heat transport model is set up, which describes the hydraulic conditions of Cologne and simulates the transient evolution of thermal anomalies in the urban ground. A main focus is on the influence of horizontal groundwater flow, groundwater recharge and trends in local ground warming. To examine heat transport in groundwater, a scenario consisting of a local hot spot with a length of 1 km of long‐term ground heating was set up in the centre of the city. Groundwater temperature‐depth profiles at upstream, central and downstream locations of this hot spot are inspected. The simulation results indicate that the main thermal transport mechanisms are long‐term vertical conductive heat input, horizontal advection and transverse dispersion. Groundwater recharge rates in the city are low (<100 mm a?1) and thus do not significantly contribute to heat transport into the urban aquifer. With groundwater flow, local vertical temperature profiles become very complex and are hard to interpret, if local flow conditions and heat sources are not thoroughly known. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Groundwater flow modelling of the Kwa Ibo River watershed in Abia State of Nigeria is presented in this paper with the aim of assessing the degree of interaction between the Kwa Ibo River and the groundwater regime of the thick sandy aquifer. The local geology of the area comprises the Quaternary to recent Benin Formation. Potential aquifer zones that were delineated earlier using geoelectrical resistivity soundings and borehole data for the area formed the basis for groundwater flow modelling. The watershed has been modelled with a grid of 65 rows by 43 columns and with two layers. Lateral inflow from the north has been simulated with constant heads at the Government College, Umuahia, and outflow at Usaka Elegu in the south. The Kwa Ibo River traverses the middle of the watershed from north to south. The river‐stage data at Umudike, Amawom, Ntalakwu and Usaka Elegu have been used for assigning surface water levels and riverbed elevations in the model. Permeability distribution was found to vary from 3 to 14·5 m day?1. Natural recharge due to rainfall formed the main input to the aquifer system, and abstraction from wells was the main output. A steady‐state groundwater flow simulation was carried out and calibrated against the May 1980 water levels using 26 observation wells. The model computations have converged after 123 iterations. Under the transient‐state calibration, the highest rainfall (and hence groundwater recharge) over the 10‐year study period was recorded in 1996, whereas the lowest was recorded in 1991. The computed groundwater balance of 55 274 m3 day?1 was comparable to that estimated from field investigations. Results from the modelling show that abstraction is much less than groundwater recharge. Hence there is the possibility for additional groundwater exploitation in the watershed through drilling of boreholes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号