首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
李栓科 《极地研究》1995,7(4):10-19
拉斯曼丘陵在渐新世已被冰盖覆没,晚渐新世冰盖厚度最大,自中新世开始,冰盖逐渐减薄后退,但该丘陵仍为冰盖占据。更新世冰川作用规模不及第三纪。18kaB.P.该丘陵区覆冰厚度超过170m,冰盖前缘仅增厚30m左右。冰盖后退出露基岩约在10.0kaB.P.前后,自9.41~6.5kaB.P.,冰川以2~3m/a的速率后退,岛屿区全部出露;自6.5~5.0kaB.P.,冰川后退速率减为1.0~1.5m/a,丘陵区裸露50%以上;约自5.0kaB.P.开始,丘陵区几乎全部出露,冰川冰盖范围与今基本相同。  相似文献   

2.
Quaternary glacial stratigraphy and relative sea-level changes reveal at least two glacial expansions over the Chelyuskin Peninsula, bordering the Kara Sea at about 77°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences mapped to altitudes of at least up to ca. 80 m a.s.l. Chronological control is provided by accelerator mass spectrometry 14C dating, electron-spin resonance and optically stimulated luminescence geochronology. Major glaciations, followed by deglaciation and marine inundation, occurred during marine oxygen isotope stages 6–5e (MIS 6–5e) and stages MIS 5d–5c. These glacial sediments overlie marine sediments of Pliocene age, which are draped by fluvial sediment of a pre-Saalian age, thereby forming palaeovalley/basin fills in the post-Cretaceous topography. Till fabrics and glacial tectonics record expansions of local ice caps exclusively, suggesting wet-based ice cap advance, followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains and the Severnaya Zemlya archipelago, appear to have repeatedly fostered initiation of a large Kara Sea ice sheet, with the exception of the Last Glacial Maximum (MIS 2), when Kara Sea ice neither impacted the Chelyuskin Peninsula nor Severnaya Zemlya, and barely touched the northern coastal areas of the Taymyr Peninsula.  相似文献   

3.
THE LAST GLACIATION OF SHETLAND, NORTH ATLANTIC   总被引:1,自引:0,他引:1  
Evidence relating to the extent, dynamics, and relative chronology of the last glaciation of the Shetland Islands, North Atlantic, is presented here, in an attempt to better illuminate some of the controversies that still surround the glacial history of the archipelago. We appraise previous interpretations and compare these earlier results with new evidence gleaned from the interpretation of a high resolution digital terrain model and from field reconnaissance. By employing a landsystems approach, we identify and describe three quite different assemblages of landscape features across the main islands of Mainland, Yell and Unst. Using the spatial interrelationship of these landsystems, an assessment of their constituent elements, and comparisons with similar features in other glaciated environments, we propose a simple model for the last glaciation of Shetland. During an early glacial phase, a coalescent British and Scandinavian ice sheet flowed approximately east to west across Shetland. The terrestrial land‐forms created by this ice sheet in the north of Shetland suggest that it had corridors of relatively fast‐flowing ice that were partially directed by bed topography, and that subsequent deglaciation was interrupted by at least one major stillstand. Evidence in the south of Shetland indicates the growth of a local ice cap of restricted extent that fed numerous radial outlet glaciers during, or after, ice‐sheet deglaciation. Whilst the absolute age of these three landsystems remains uncertain, these new geo‐morphological and palaeoglaciological insights reconcile many of the ideas of earlier workers, and allow wider speculation regarding the dynamics of the former British ice sheet.  相似文献   

4.
揭示气候变化的南极冰盖研究新进展   总被引:6,自引:1,他引:6  
秦大河  任贾文 《地理学报》1995,50(2):178-184
南极冰盖是气候的产物,对气候也有反馈作用,冰盖物质平衡变化与全球海平面升降息息相关,并引发地球系统内的一系列变化,南极冰盖是记录全球变化信息的良好载体,具有信息量大,时间序列长,保真性能强,分辨率高以及可进行现代过程定量研究等其他介质无法取代的独特优点,随着科学技术的发展和人类对全球问题的日益重视,南极冰盖与全球变化研究这一领域将会以高起点,多学科互相交叉,渗透为特色,成为未来南极研究的热点领域。  相似文献   

5.
We present here a revised reconstruction of the Ross ice drainage system of Antarctica at the last glacial maximum (LGM) based on a recent convergence of terrestrial and marine data. The Ross drainage system includes all ice flowlines that enter the marine Ross Embayment. Today, it encompasses one-fourth of the ice-sheet surface, extending far inland into both East and West Antarctica. Grounding lines now situated in the inner Ross Embayment advanced seaward at the LGM (radiocarbon chronology in Denton and Marchant 2000 and in Hall and Denton 2000a, b), resulting in a thick grounded ice sheet across the Ross continental shelf. In response to this grounding in the Ross (and Weddell) Embayment, ice-surface elevations of the marine-based West Antarctic Ice Sheet were somewhat higher at the LGM than at present (Steig and White 1997; Borns et al. 1998; Ackert et al. 1999). At the same time, surface elevations of the East Antarctic Ice Sheet inland of the Transantarctic Mountains were slightly lower than now, except near outlet glaciers that were dammed by grounded ice in the Ross Embayment. The probable reason for this contrasting behavior is that lowered global sea level at the LGM, from growth of Northern Hemisphere ice sheets, caused widespread grounding of the marine portion of the Antarctic Ice Sheet, whereas decreased LGM accumulation led to slight surface lowering of the interior terrestrial ice sheet in East Antarctica. Rising sea level after the LGM tripped grounding-line recession in the Ross Embayment, which has probably continued to the present day (Conway et al. 1999). Hence, gravitational collapse of the grounded ice sheet from the Ross Embayment, accompanied by lowering of the interior West Antarctic ice surface and of outlet glaciers in the Transantarctic Mountains, occurred largely during the Holocene. At the same time, increased Holocene accumulation caused a slight rise of the inland East Antarctic ice surface.  相似文献   

6.
We present sub-bottom profiling (sparker and Parasound) results from the eastern Kara Sea, on the Eurasian Arctic margin, which enable the identification of the Last Glacial Maximum (LGM) ice extent. The analysed profiles show that glacigenic diamicton is ubiquitous at the seafloor, east of about 95°E and 78°N. The eastern margin of this diamicton is expressed in a conspicuous morainic ridge at the entrance to the Vilkitsky Strait, and to the south the diamicton projection aligns with the LGM limit mapped at the north-western Taymyr. The bottom of the Voronin Trough further north is also covered with diamicton and has numerous erosional bedforms, indicating a streamlined flow of grounded ice along the trough. Accurate dating of the diamicton is not attainable, but the correlation of pre-diamict sediments to well-dated sections in the Laptev Sea, and available 14C ages from sediments on top of the diamicton, indicate its LGM age. These results support the palaeogeographic reconstruction that assumes the extension of the LGM Barents–Kara ice sheet as far east as Taymyr. This configuration implies that LGM ice blocked the drainage of the Ob and Yenisey rivers on the Kara shelf. This inference is consistent with the presence of large (>100 km wide) lenses of basin infill adjacent to the southern margin of the diamicton. However, the limited distribution of the eastern Kara ice lobe, not extending on Severnaya Zemlya, suggests that the ice was fairly thin and short-lived: insufficient for the accumulation of the gigantic proglacial lakes that occurred during earlier glaciations.  相似文献   

7.
ABSTRACT. We examine the deglaciation of the eastern flank of the North Patagonian Icefield between latitudes 46° and 48°S in an attempt to link the chronology of the Last Glacial Maximum moraines and those close to present-day outlet glaciers. The main features of the area are three shorelines created by ice-dammed lakes that drained eastwards to the Atlantic. On the basis of 16 14C and exposure age dates we conclude that there was rapid glacier retreat at 15–16 ka (calendar ages) that saw glaciers retreat 90–125 km to within 20 km of their present margins. There followed a phase of glacier and lake stability at 13.6–12.8 ka. The final stage of deglaciation occurred at c. 12.8 ka, a time when the lake suddenly drained, discharging nearly 2000 km3 to the Pacific Ocean. This latter event marks the final separation of the North and South Patagonian Icefields. The timing of the onset of deglaciation and its stepped nature are similar to elsewhere in Patagonia and the northern hemisphere. However, the phase of lake stability, coinciding with the Antarctic Cold Reversal and ending during the Younger Dryas interval, mirrors climatic trends as recorded in Antarctic ice cores. The implication is that late-glacial changes in southern Patagonia were under the influence of the Antarctic realm and out of phase with those of the northern hemisphere.  相似文献   

8.
The extent of ice, thickness and dynamics of the Last Glacial Maximum (LGM) ice sheets in the Antarctic Peninsula region, as well as the pattern of subsequent deglaciation and climate development, are not well constrained in time and space. During the LGM, ice thickened considerably and expanded towards the middle–outer submarine shelves around the Antarctic Peninsula. Deglaciation was slow, occurring mainly between >14 Ky BP (14C kilo years before present) and ca. 6 Ky BP, when interglacial climate was established in the region. After a climate optimum, peaking ca. 4 - 3 Ky BP, a cooling trend started, with expanding glaciers and ice shelves. Rapid warming during the past 50 years may be causing instability to some Antarctic Peninsula ice shelves.  相似文献   

9.
Earlier work in northeast Greenland has suggested a limited advance of the Greenland Ice Sheet during the Last Glacial Maximum (LGM). However, this concept has recently been challenged by marine geological studies, indicating grounded ice on the continental shelf at this time. New 10Be‐ages from the Store Koldewey island, northeast Greenland, suggest that unscoured mountain plateaus at the outer coast were covered at least partly by cold‐based ice during the LGM. It is, however, still inconclusive whether this ice was dynamically connected to the Greenland Ice Sheet or not. Regardless of the LGM ice sheet extent, the 10Be results from Store Koldewey add to a growing body of evidence suggesting considerable antiquity of crystalline unscoured terrain near present and Pleistocene ice sheet margins.  相似文献   

10.
南极冰盖地形数据库BEDMAP 2述评   总被引:1,自引:0,他引:1       下载免费PDF全文
陈昀  孙波  刘春  崔祥斌  王甜甜 《极地研究》2014,26(2):254-261
南极冰盖物质收支与不稳定性对全球气候变化和海平面升高有着重要影响,而冰盖厚度和冰下地形则是研究南极冰盖的物质平衡、动力及不稳定性极为重要的参数。自20世纪50年代以来,国际上针对南极冰盖开展了大量的冰雷达以及重、磁测量,这些测量结果被汇集并形成冰厚和冰下地形数据库,进而服务于冰盖模式和地球系统研究,最新推出的成果便是BEDMAP 2(Bedrock Mapping Project 2)。首先介绍了BEDMAP 2的数据来源、结构以及数据处理,并讨论了数据的质量评价,然后分析了BEDMAP 2中展示的整个南极冰盖与冰下地形及其特点。最后,对于BEDMAP 2对中国在南极冰盖考察和研究方面的作用进行了一些讨论与展望。  相似文献   

11.
A high resolution sediment record spanning the entire time since the ice retreat after the Last Glacial Maximum has been recovered from Lac d'Annecy. The main focus of this study is to develop a reliable chronology of the record and to evaluate the environmental variability during the period of Late Würmian ice retreat. Most of the record is laminated. These laminations are of different structure, composition, and thickness. On the basis of varve stratigraphy five sedimentation units were identified which correspond to particular stages in the deglaciation of the region. Except for one each facies type has been related to an annual cycle of deposition. Varve counting in combination with radiocarbon dating provides the time control of the record and dates the base of lacustrine deposits to 16,600 varve yrs BP. The beginning of the Late Glacial is marked by a shift from clastic to endogenic carbonate varves caused by the climatic warming. Clastic varves have been further subdivided into a succession of complex and standard varve types. These variations of clastic varve formation are triggered by the ice retreat and related hydrological variations in the watershed of the lake. Sedimentological, mineralogical and isotopic data help identify different sediment sources of the sub-layers. Proximal sediments originate from local carbonaceous bedrock whereas distal sediments have characteristics of the molassic complex of the outer Alps. The alternation of proximal and distal sediments in the varve sequence reflects the deglaciation of the Annecy area with a changing influence of local and regional glaciers. The melting of the Alpine ice sheet is the driving force for regional environmental changes which in turn control the sediment transport and deposition processes in Lac d'Annecy.  相似文献   

12.
Ice surface topography of a late Pleistocene glacier complex, herein named the Taylor River Glacier Complex (TRGC), was reconstructed on the basis of detailed mapping of glacial landforms combined with analyses of aerial photos and topographic maps. During the last glacial maximum (LGM), the TRGC covered an area of 215 km2 and consisted of five valley or outlet glaciers that were nourished by accumulation in cirques basins and/or upland ice fields.Equilibrium-line altitudes (ELAs) for the glaciers of the TRGC were estimated using the accumulation-area ratio method, assuming that ratio to be 0.65 ± 0.05. ELAs thus derived ranged from about 3275 to 3400 m, with a mean of 3340 ± 60 m. A degree-day model (DDM) was used to infer the climatic significance of the LGM ELA. With no appreciable differences in precipitation with respect to modern climate, the ELA implies that mean summer temperatures during the LGM were 7.6 °C cooler than today. The DDM was also used to determine the temperatures required to maintain steady-state mass balances for each of the reconstructed glaciers. The required reductions in summer temperature vary little about a mean of 7.1 °C. The sensitivity of these results to slight (± 25%) changes assumed for LGM precipitation are less than ± 0.5 °C. Even under an LGM climate in which precipitation is assumed to be substantially different (± 50%) than the present, mean summer temperatures must be on the order of 7.0 to 8.5 °C lower to depress equilibrium lines to LGM altitudes. The greater sensitivity of the ELA to changes in temperature suggests that glaciation in the region was driven more by decreases in summer temperature rather than increases in precipitation.  相似文献   

13.
Most of the last glacial maximum (LGM) glacier record west of the southern Andes (40–55° S) is today submerged under the Pacific Ocean and therefore the Archipiélago de Chiloé (42–43° S) provides an unusual opportunity to study local sediment and landform associations to help understand paleoglacial features of the former Patagonian ice sheet (PIS). In this context, this work presents the first comprehensive glacial geomorphologic mapping of the central region of the Archipiélago de Chiloé, which is located in a transitional geomorphic region between the Chilean Lake District (CLD, 39–41° S, 73° W) and northwest Patagonia (~43–48° S, 74° W). The Chilotan glacial geomorphology and sediment associations resulted from a warm‐based glacier that characterizes a typical active glacial temperate landsystem, which in central Chiloé combines deposits and landform units originated in subglacial and subaerial environments. Paleoglacial features that occur in central Chiloé are characteristic of an ice‐sheet style of glaciation, which differentiates it from a typical Alpine glacial style defined previously for the CLD. Therefore, the Archipiélago de Chiloé represents a geographical break point where the PIS became the large ice mass that occupied the Patagonian Andes during the last glacial period (Llanquihue Glaciation). A double ice‐contact slope on the east face of the Cordillera de La Costa provides evidence for the most extensive Early Llanquihue glacial advance on Isla Grande de Chiloé. The most prominent LGM advance in the area occurred at 26 000 cal yr BP, coincident with regional stadial conditions, and is defined by a big moraine along the east coast of the island.  相似文献   

14.
Relict marginal moraines are commonly used landforms in palaeoglaciological reconstructions. In the Swedish mountains, a large number of relict marginal moraines of variable morphology and origin occur. In this study, we have mapped 234 relict marginal moraines distributed all along the Swedish mountains and classified them into four morphological classes: cirque‐and‐valley moraines, valley‐side moraines, complex moraines and cross‐valley moraines. Of these, 46 moraines have been reclassified or are here mapped for the first time. A vast majority of the relict moraines are shown to have formed during deglaciation of an ice‐sheet, rather than by local mountain glaciers as suggested in earlier studies. The relict marginal moraines generally indicate that deglaciation throughout the mountains was characterised by a retreating ice‐sheet, successively damming glacial lakes, and downwasting around mountains. The general lack of moraines indicating valley and cirque glaciers during deglaciation suggests that climatic conditions were unfavourable for local glaciation during the last phase of the Weichselian. This interpretation contrasts with some earlier studies that have reconstructed the formation of local glaciers in the higher parts of the Swedish mountains during deglaciation.  相似文献   

15.
The overall pattern of deglaciation of the southern part of the Scandinavian Ice Sheet has been considered established, although details of the chronology and ice sheet dynamics are less well known. Even less is known for the south Swedish Upland because the area was deglaciated mostly by stagnation. Within this area lies the conspicuous Vimmerby moraine, for which we have used the terrestrial cosmogenic nuclide (10Be) exposure dating technique to derive the exposure age of six glacially transported boulders. The six 10Be cosmogenic ages are internally consistent, ranging from 14.9 ± 1.5 to 12.4 ± 1.3 ka with a mean of 13.6 ±0.9 ka. Adjusting for the effects of surface erosion, snow burial and glacio-isostatic rebound causes the mean age to increase only by c. 6% to c. 14.4± 0.9 ka. The 10Be derived age for the Vimmerby moraine is in agreement with previous estimates forthe timing of deglaciation based on radiocarbon dating and varve chronology. This result shows promise for further terrestrial cosmogenic nuclide exposure studies in southern Sweden.  相似文献   

16.
Scanning Multichannel Microwave Radiometer (SMMR) data are used to estimate the annual melt duration (number of days with melt) for elevation transects over the Greenland ice sheet during the period from 1979‐1986. The annual melt duration is used to estimate the number of positive degree days (PDDs), which are used in a degree‐day mass balance model to determine ablation rates and the equilibrium line altitude (ELA). The annual melt duration along two transects estimated with SMMR data compares favorably, particularly above the ELA, to melt duration calculated from surface temperature data for the same locations. The mass balance estimates and ELA locations along eight transects agree reasonably well with measurements reported in previous studies using surface temperature data. ELAs were within 10m of published values along two transects, and the root mean square error of SMMR‐derived versus surface mass balance measurements was 43mm yr?1. The estimated error in SMMR‐derived ablation is between ±15% and ±50%, but could be reduced substantially by using daily microwave data available from the Special Sensor Microwave/Imager (SSM/I). This research shows the feasibility of using passive microwave data to estimate the ablation rate in order to determine ELA, which can be used to monitor the mass balance of the ice sheet.  相似文献   

17.
Scanning Multichannel Microwave Radiometer (SMMR) data are used to estimate the annual melt duration (number of days with melt) for elevation transects over the Greenland ice sheet during the period from 1979-1986. The annual melt duration is used to estimate the number of positive degree days (PDDs), which are used in a degree-day mass balance model to determine ablation rates and the equilibrium line altitude (ELA). The annual melt duration along two transects estimated with SMMR data compares favorably, particularly above the ELA, to melt duration calculated from surface temperature data for the same locations. The mass balance estimates and ELA locations along eight transects agree reasonably well with measurements reported in previous studies using surface temperature data. ELAs were within 10m of published values along two transects, and the root mean square error of SMMR-derived versus surface mass balance measurements was 43mm yr?1. The estimated error in SMMR-derived ablation is between ±15% and ±50%, but could be reduced substantially by using daily microwave data available from the Special Sensor Microwave/Imager (SSM/I). This research shows the feasibility of using passive microwave data to estimate the ablation rate in order to determine ELA, which can be used to monitor the mass balance of the ice sheet.  相似文献   

18.
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL) dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura’s formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation–area ratio (AAR), maximum elevation of lateral moraines (MELM), toe–to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250–2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The ELA △ values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwanese and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.  相似文献   

19.
Detailed geomorphological mapping provides evidence for at least three phases of glaciation in the Parque Natural Lago de Sanabria, in northwest Spain. The most extensive glaciation was characterised by a large plateau ice cap. A combination of geomorphological evidence and glacier modelling indicates that this ice cap covered an area of more than 440 km2, with a maximum ice thickness of c. 300 m and outlet glaciers reaching as low as 1000 m. This represents the largest ice mass in Iberia outside the Pyrenees and one of the largest in the mountains of southern Europe and the Mediterranean region. Radiocarbon dates from the base of lacustrine sequences appear to suggest that the most extensive phase of ice-cap glaciation occurred during the last cold stage (Weichselian) with deglaciation occurring before 14–15 ka 14C BP. A second phase of glaciation is recorded by the moraines of valley glaciers, which may have drained small plateau ice caps; whilst a final phase of glaciation is recorded by moraines in the highest cirques.  相似文献   

20.
The eastern part Svalbard archipelago and the adjacent areas of the Barents Sea were subject to extensive erosion during the Late Weichselian glaciation. Small remnants of older sediment successions have been preserved on Edgeeya, whereas a more complete succession on Kongsøya contains sediments from two different ice-free periods, both probably older than the Early Weichselian. Ice movement indicators in the region suggest that the Late Weichselian ice radiated from a centre east of Kong Karls Land. On Bjørnøya, on the edge of the Barents Shelf, the lack of raised shorelines or glacial striae from the east indicates that the western parts of the ice sheet were thin during the Late Weichselian. The deglaciation of Edgeøya and Barentsøya occurred ca 10,300 bp as a response to calving of the marine-based portion of the ice sheet. Atlantic water, which does not much influence the coasts of eastern Svalbard today, penetrated the northwestern Barents Sea shortly after the deglaciation. At that time, the coastal environment was characterised by extensive longshore sediment transport and deposition of spits at the mouths of shallow palaeo-fjords.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号