首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind and temperature profiles in the stable boundary layer were analyzed in the context of MoninObukhov similarity. The measurements were made on a 60-m tower in Kansas during October 1999 (CASES-99). Fluxprofile relationships, obtained from these measurements in their integral forms, were established for wind speed and temperature. Use of the integral forms eliminates the uncertainty and accuracy issues resulting from gradient computations. The corresponding stability functions, which were nearly the same for momentum and virtual sensible heat, were found to exhibit different features under weakly stable conditions compared to those under strongly stable conditions. The gradient stability functions were found to be linear, namely m = 1+ 5.8 and h = 1 + 5.4 up to a limit of the MoninObukhov stability parameter = 0.8; this is consistent with earlier findings. However, for stronger stabilities beyond a transition range, both functions were observed gradually to approach a constant, with a value of approximately 7. To link these two distinct regimes, a general but pliable functional form with only two parameters is proposed for the stability functions, covering the entire stability range from neutral to very stable conditions.  相似文献   

2.
A numerical model of airflow above changes in surface roughness and thermal conditions is extended to include cases with stable thermal stratification within the internal boundary-layer. The model uses a mixing-length approach with empirical forms for M and H.Results are presented for some basic cases and an attempt is then made to compare results given by the model with the experimental results of Rider, Philip and Bradley. Tolerable agreement is achieved. The importance of roughness change and thermal stability effects in the diffusion of heat and moisture near a leading edge is emphasised.Notation A Refers to Taylor (1970) - B Businger-Dyer constant (= 16.0) in forms for M and H - C Constant in form for in stable case - c p Specific heat at constant pressure - E Scaled absolute humidity - g Acceleration due to gravity - H Upward vertical heat flux - H 0, H 1 Surface heat fluxes for x <0, x0 - H E Upward latent heat flux - k Von Kármán's constant (= 0.4) - K H K W Eddy transfer coefficients for heat and water vapour - L Monin-Obukhov length - L H Latent heat of evaporation for water - m Ratio of roughness lengths ( = z 1/z 0) - RPB Refers to Rider et al. (1964) - RL* Non-dimensional parameter (see Equations (9), (20a), (22a), (24a)) - R* Net radiation less ground heat flux (see Equations (15), (16)) - T Scaled temperature - T 1 Downstream scaled surface temperature - u 0 u 1(x) Surface friction velocities for x <0, x0 - U, W Horizontal and vertical mean velocities - x, z Horizontal and vertical co-ordinates - Z i Local roughness length - z 0, z i Roughness lengths for x < 0, x 0 - Temperature - 0, 1 Surface temperatures for x<0, x0 - E Non-dimensional absolute humidity gradient - H Non-dimensional temperature gradient of heat flux - M Non-dimensional wind shear - = M = H = E an assumption used in stable conditions - Air density - Absolute humidity - w Density of water - Kinematic shear stress - Logarithmic height scale (= ln(z+z 1)/z 1)  相似文献   

3.
A review of flux-profile relationships   总被引:33,自引:5,他引:33  
Flux-profile relationships in the constant flux layer are reviewed. The preferred relationships are found to be those of Dyer and Hicks (1970), namely, H = W =(1–16(z/L))–1/2, M =(1–16(z/L))–1/4 for the unstable region, and H = W = M = 1+5(z/L) for the stable region.The carefully determined results of Businger et al. (1971) remain a difficulty which calls for considerable clarification.  相似文献   

4.
The aerodynamic classification of the resistance laws above solid surfaces is based on the use of a so-called Reynolds roughness number Re s =h s u */, whereh s is the effective roughness height, -viscosity,u *-friction velocity. The recent experimental studies reported by Toba and Ebuchi (1991), demonstrated that the observed variability of the sea roughness cannot be explained only on the basis of the classification of aerodynamic conditions of the sea surface proposed by Kitaigorodskii and Volkov (1965) and Kitaigorodskii (1968) even though the latter approach gains some support from recent experimental studies (see for example Geernaertet al. 1986). In this paper, an attempt is made to explain some of the recently observed features of the variability of surface roughness (Toba and Ebuchi, 1991; Donelanet al., 1993). The fluctuating regime of the sea surface roughness is also described. It is shown that the contribution from the dissipation subrange to the variability of the sea surface can be very important and by itself can explain Charnock's (1955) regime.  相似文献   

5.
Equilibrium evaporation beneath a growing convective boundary layer   总被引:1,自引:1,他引:0  
Expressions for the equilibrium surface Bowen ratio ( s ) and equilibrium evaporation are derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the mixed layer i and the entrainment parameter A R . If AR is put equal to zero, the solution for s becomes-that previously obtained for the zero entrainment or closed box model. The Priestley-Taylor parameter is also calculated and plotted in terms ofA R and i . Realistic combinations of the atmospheric parameters give values of in the range 1.1 to 1.4.  相似文献   

6.
Convective Profile Constants Revisited   总被引:2,自引:2,他引:0  
This paper examines the interpolation betweenBusinger–Dyer (Kansas-type) formulae,u = (1 -1 6 )-1/4 andt = (1 - 16 )-1/2, and free convection forms. Based on matching constraints, the constants, au and at, in the convective flux-gradient relations, u = (1 - au )-1/3 and t = (1 - at )-1/3, are determined. It isshown that au and at cannot be completely independent if convective forms are blended with theKansas formulae. In other words, these relationships already carryinformation about au and at. This follows because the Kansas relations cover a wide stability range (up to = - 2), which includes a lower part of the convective sublayer (about 0.1 < - < 2). Thus, there is a subrange where both Kansas and convective formulae are valid. Matching Kansas formulae and free convection relations within thesubrange 0.1 < - < 2 and independently smoothing ofthe blending function are used to determine au and at. The values au = 10 for velocity and at = 34for scalars (temperature and humidity) give a good fit. This new approacheliminates the need for additional independent model constants and yields a`smooth' blending between Kansas and free-convection profileforms in the COARE bulk algorithm.  相似文献   

7.
The extension of Lagrangian similarity theory of diffusion to stratified flow is examined, to improve its prediction of the vertical spread of a passive substance. In the basic equation, where is the average height of a cluster of particles,u * is the friction velocity andL is Monin-Obukhov length. It is shown theoretically, under the assumption of an equivalence between the diffusivities of heat and matter, that the unspecified function is the reciprocal of a more familiar meteorological parameter n , the dimensionless temperature gradient. The universal constantb is found to be approximately equal to von Karman's constant for various stability conditions. The predicted effect of stability on vertical spread shows excellent agreement with that of the published data from the O'Neill experiments.  相似文献   

8.
STAR (System for Transfer of Atmospheric Radiation) was developed to calculate accurately and efficiently the irradiance, the actinic flux, and the radiance in the troposphere. Additionally a very efficient calculation scheme to computer photolysis frequencies for 21 different gases was evolved. STAR includes representative data bases for atmospheric constituents, especially aerosol particles. With this model package a sensitivity study of the influence of different parameter on photolysis frequencies in particular of O3 to Singlet D oxygen atoms, of NO2, and of HCHO was performed. The results show the quantitative effects of the influence of the solar zenith angle, the ozone concentration and vertical profile, the aerosol particles, the surface albedo, the temperature, the pressure, the concentration of NO2, and different types of clouds on the photolysis frequencies.Notation I A(, ) actinic flux - I H(, ) irradiance - L(, , , ) radiance - wavelength - azimuth angle - cosine of zenith angle - s cosine of solar zenith angle - optical depth - s scattering coefficient - c extinction coefficient - o single scattering albedo - p mix mixed phase function - g mix mixed asymmetry factor - J gas photolysis frequency  相似文献   

9.
Summary A simple method of representing cumulative frequency distributions ofk-day period amounts of precipitation (30k1800), deduced from observations at Hoofddorp during 87 years and from observations at Winterswijk during 73 years, by means of cumulative Poisson distributions, had been developed. Poisson's constant appeared to depend linearly onk only, while the Poisson unitq appeared to be only proportional to the annual variation.In this paper it is shown that the representation of observed cumulative frequency distributions with the aid of Poisson distributions is true for any station in The Netherlands in the interval 30k1800. A map with isopleths of -values fork=360 presents a simple picture, so that for any station an -value fork=360 can be estimated. For the process of representation the meank-day period amount of precipitation is also necessary. This value may be obtained from a map for each of the 12 months, each map covered with isohyetal lines, which give a distribution of the monthly precipitation.
Zusammenfassung Es wurde eine Methode entwickelt, um in einfacher Weise Summenfunktionen vonk-tägigen Niederschlagsmengen (30k1800), welche aus Beobachtungen in Hoofddorp während 87 Jahren und in Winterswijk während 73 Jahren angestellt worden sind, durch kumulative Poissonsche Häufigkeitsverteilungen darzustellen. Dabei ergab sich, daß die Poissonsche Konstante nur linear vonk abhängig ist, während die Poissonsche Einheitq sich als proportional zum Jahresgang erwies.In der vorliegenden Untersuchung wird nun gezeigt, daß die Darstellung der beobachteten kumulativen Häufigkeitsverteilungen mit Hilfe von Poisson-Verteilungen für irgendeine Station in den Niederlanden im Bereich von 30k1800 gültig ist. Eine Karte mit Isoplethen der -Werte fürk=360 ergibt ein einfaches Bild, aus dem für jede beliebige Station ein -Wert fürk=360 abgelesen werden kann. Für eine solche Darstellung muß auch die Niederschlagsmenge derk-tägigen Perioden bekannt sein; diese Werte erhält man aus monatlichen Isohyeten-Karten, die die monatliche Niederschlagsverteilung wiedergeben.

Résumé On avait développé une méthode pour représenter d'une façon simple les distributions des sommes cumulées dek jours (30k1800) des quantités de précipitations déduites des observations faites à Hoofddorp pendant 87 ans et à Winterswijk pendant 73 ans. On avait démontré que la constante de Poisson ne dépend dek que linéairement et que l'unité de Poissonq est proportionnelle à la variation annuelle.De la présente étude ressort que, dans l'intervalle de 30k1800, la représentation des distributions des fréquences cumulées observées au moyen des formules de Poisson est valable pour une station quelconque aux Pays-Bas. Une carte d'isoplèthes de la valeur pourk=360 donne une image suffisamment simple pour que la valeur d'une station quelconque aux Pays-Bas puisse être déterminée sans difficulté. Pour une telle représentation il faut connaître également les moyennes des quantités des périodes dek jours de la précipitation. Ces valeurs peuvent se déduire de cartes mensuelles des isohyètes moyennes.


With 1 Figure

Dedicated to Dr.Anders K. Ångström on the occasion of his 70th birthday.  相似文献   

10.
Recent studies suggest that the destruction of methane by Cl in the marine boundary layer could be accounted for as another major sink besides the methane destruction by OH. High level ab initio molecular orbital calculations have been carried out to study the CH4+Cl reaction, the carbon Kinetic Isotope Effect (KIE) is calculated using Conventional Transition-State Theory (CTST) plus Wigner and Eckart semiclassical tunneling corrections. The calculated KIE is around 1.026 at 300 K and has a small temperature variation. This is by far the largest KIE among different processes involving atmospheric methane destruction (e.g., OH, soil). A calculated mass balance of atmospheric methane including the KIE for the CH4+Cl reaction is found to favor those methane budgets with enhanced biological methane sources, which have relatively lighter carbon isotope composition.  相似文献   

11.
TheConvectiveDiffusionObserved byRemoteSensors (CONDORS) field experiment conducted at the Boulder Atmospheric Observatory used innovative techniques to obtain three-dimensional mappings of plume concentration fields, /Q, of oil fog detected by lidar and chaff detected by Doppler radar. It included extensive meteorological measurements and, in 1983, tracer gases measured at a single sampling arc. Final results from ten hours of elevated and surface release data are summarized here. Many intercomparisons were made. Oil fog /Q measured 40m above the arc are mostly in good agreement withSF 6 values, except in a few instances with large spacial inhomogeneities over short distances. After a correction scheme was applied to compensate for the effect of its settling speed, chaff dy/Q agreed well with those of oil except in two cases of oil fog hot spots. Mass or frequency distribution vs. azimuth or elevation angle comparisons were made for chaff, oil, and wind, with mostly good agreements. Spacial standard deviations, y and z, of chaff and oil agree overall and are consistent at short range with velocity standard deviations vand w 0.6w* (the convective scale velocity), as measured atz>100m. Surface release y is enhanced up to 60% at smallx, consistent with the Prairie Grass measurements and with larger v and reduced wind speed measured near the surface. Decreased y at small dimensionless average times is also noted. Finally, convectively scaled dy, C y, were plotted versus dimensionlessx andz for oil, chaff, and corrected chaff for each 30–60 min period. Aggregated CONDORSC y fields compare well with laboratory tank and LES numerical simulations; surface-released oil fog compares expecially well with the tank experiments. However, large deviations from the norm occurred in individual averaging periods; these deviations correlated strongly with anomalies in measured distributions.On assignment to the US Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, RTP, NC.  相似文献   

12.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

13.
Several formulations and proposals to determine the value of the radiometric scalar roughness for sensible heatz 0h,r are tested with respect to their performance in the estimation of the sensible heat flux by means of the profile equations derived from Monin-Obukhov similarity theory. The equations are applied to the data set of spatially averaged surface skin temperature and profiles of wind speed and temperature observed in a pasture field during a growing season. The use of a physical model developed for a dense canopy to estimate scalar roughness for sensible heatz 0h,r produced sensible heat fluxH with a correlation coefficientr=0.884, the ratio of means being H s /H=1.19 in a comparison with reference values ofH s . In comparison, a proposal for a fixed value ofz 0h yieldedr=0.887, H s /H=0.879. In both cases, the validity ofz 0h =z 0h,r was assumed. All expressions derived to estimatez 0h,r from a multiple linear regression with such predictors as leaf area index, solar radiation and the ratio of solar radiation to extraterrestrial radiation, were found to produce a better result, withr better than 0.90 and H s /H around 1.0. However, when the constantsc andf of a linear regression equationHs=cH+f are used to evaluate the equations, a marked difference in performance of each formulation appeared. In general, equations with smaller numbers of predictors tend to produce a biased result, i.e., an overestimation ofH at largeH s . These values ofH are used in conjunction with the energy balance equation to derive values of the latent heat fluxLE, which are shown to be in good agreement with the reference valuesLE s , withr greater than 0.97.  相似文献   

14.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

15.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

16.
Turbulence measurements performed in a stable boundary layer over the sloping ice surface of the Vatnajökull in Iceland are described. The boundary layer, in which katabatic forces are stronger than the large-scale forces, has a structure that closely resembles that of a stable boundary layer overlying a flat land surface, although there are some important differences. In order to compare the two situations the set-up of the instruments on an ice cap in Iceland was reproduced on a flat grass surface at Cabauw, the Netherlands. Wind speed and temperature gradients were calculated and combined with flux measurements made with a sonic anemometer in order to obtain the local stability functions m and h as a function of the local stability parameter z/L. Unlike the situation at Cabauw, where m was linear as a function of z/L, in the katabatically forced boundary layer, the dependence of m on stability was found to be non-linear and related to the height of the wind maximum. Thermal stratification and the depth of the stable boundary layer however seem to be rather similar under these two different forcing conditions.Furthermore, measurements on the ice were used to construct the energy balance. These showed good agreement between observed melt and components contributing to the energy balance: net radiation (supplying 55% of the energy), sensible heat flux (30%) and latent heat flux (15%).Local sources and sinks in the turbulent kinetic energy budget are summed and indicate a reasonable balance in near-neutral conditions but not in more stable situations. The standard deviation of the velocity fluctuations u, v, and w, can be scaled satisfactorily with the local friction velocity u* and the standard deviation of the temperature fluctuation with the local temperature scale *.  相似文献   

17.
Surface-Layer Fluxes in Stable Conditions   总被引:2,自引:2,他引:0  
Micrometeorological tower data from the Microfronts experiment are analyzed. Scale-dependencies of the flux and flux sampling error are combined to automatically determine Reynolds turbulence cut-off time scales for computing fluxes from time series. The computed downward heat flux at the 3 m height averaged over nine nights with 7.3 hours each night is 20% greater than the downward heat flux computed at the 10 m height. In contrast, there is only a 1.2% difference between 3 m and 10 m heat fluxes averaged over daytime periods, and there is less than a 2% difference between 3 m and 10 m momentum fluxes whether averaged over nighttime or daytime periods.Stability functions, M(z/L) and H(z/L) are extended to z/L up to 10, where z is the observational height and L is the Obukhov length. For 0.01 < z/L < 1 the estimated functions generally agree with Businger-Dyer formulations, though the H estimates include more scatter compared to the M estimates. For 1 < z/L < 10, the flux intermittency increases, the flux Richardson number exceeds 0.2, and the number of flux samples decreases. Nonetheless the estimates of the stability function M based on 3-m fluxes are closer to the formula proposed by Beljaars and Holtslag in 1991 while the M functions based on 10-m fluxes appears to be closer to the formula proposed by Businger et al. in 1971. The stability function H levels off at z/L = 0.5.  相似文献   

18.
The validity of a common radiometeorological application of Monin-Obukhov (M-O) similarity theory to potential refractivity (), which is a nonlinear combination of and q, is determined by whether the properly nondimensionalized gradient is a universal function of z/L. We develop expressions for the flux of (and its scaling parameter, *) in terms of temperature and moisture fluxes, and an M-O similarity expression for the vertical gradient. Results show that even if and q are accepted as exactly following M-O similarity expressions, when the surface layer is stable, does not obey such an expression. That is, when properly nondimensionalized, the vertical gradient of does not collapse to a single universal function of z/L. The assumption that behaves as a similarity variable is approximately correct for well-mixed surface layers under unstable and near-neutral conditions.The gradient of is an important factor in determining microwave propagation conditions. We demonstrate the error induced in a simple algorithm when is assumed to obey M-O similarity theory. An alternative methodology, consistent with the application of similarity theory to and q, is then developed without requiring that itself satisfy similarity theory.  相似文献   

19.
We present the first application of a multi-stage impactor to study volcanic particle emissions to the troposphere from Masaya volcano, Nicaragua. Concentrations of soluble SO4 2–,Cl, F, NO3 , K+, Na+,NH4 +, Ca2+ and Mg2+ were determined in 11 size bins from 0.07 m to >25.5 m. The near-source size distributions showed major modes at 0.5m (SO4 2–, H+,NH4 +); 0.2 m and 5.0 m (Cl) and 2.0–5.0 m(F). K+ and Na+ mirrored the SO4 2– size-resolvedconcentrations closely, suggesting that these were transported primarily asK2SO4 and Na2SO4 in acidic solution, while Mg2+ andCa2+ presented modes in both <1 m and >1 m particles. Changes in relative humidity were studied by comparing daytime (transparent plume) and night-time (condensed plume) results. Enhanced particle growth rates were observed in the night-time plume as well as preferential scavenging of soluble gases, such as HCl, by condensed water. Neutralisation of the acidic aerosol by background ammonia was observed at the crater rim and to a greater extent approximately 15 km downwind of the active crater. We report measurements of re-suspended near-source volcanic dust, which may form a component of the plume downwind. Elevated levels ofSO4 2–, Cl, F,H+, Na+, K+ and Mg2+ were observed around the 10 m particle diameter in this dust. The volcanic SO4 2– flux leaving the craterwas 0.07 kg s–1.  相似文献   

20.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号