首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Late Palaeozoic configuration of Pangaea contributed to a palaeoclimatic extreme that was characterized by both icehouse and monsoonal conditions. This study uses sedimentological, geochemical, and provenance data from silty facies of the Earp and equivalent Supai Formations (Arizona, New Mexico) to shed light on atmospheric circulation and glacial–interglacial climate change in westernmost equatorial Pangaea. Five silt‐rich facies comprise both loessite and marine and fluvially reworked loessite. An initial aeolian origin for the silt is indicated by the remarkably invariant grain size and the laterally continuous, sheet‐like geometry of beds. The silt‐rich facies occur in repetitive facies associations (1–20 m scale) that form mixed continental‐marine (loess, marine‐reworked loess), shallow‐marine, and continental (loess, palaeosol) ‘sequences’. Facies repetitions of both mixed continental‐marine and shallow‐marine sequences reflect a linked glacioeustatic–glacioclimatic control, whereas the continental (loess–palaeosol) couplets reflect a primary glacial–interglacial climatic cyclicity linked to glacioeustasy. Stratigraphic interpretations suggest that aeolian silt flux maximized during glacial to incipient interglacial stages (lowstand to early transgression), and decreased significantly or ceased during interglacials (highstand to early falling stage). Detrital‐zircon geochronological data indicate a transition from dominantly north‐easterly winds during the Middle Pennsylvanian to north‐westerly and south‐easterly winds by the Early Permian, which trend is inferred to reflect the onset of monsoonal circulation in western Pangaea. Relative grain‐size data support the detrital‐zircon data, and exhibit a significant decrease from the Sedona arch/Central Arizona shelf (north) to the Pedregosa basin (south) sections. Whole‐rock geochemical data suggest a relatively unweathered source for the silt in the north, and detrital‐zircon data indicate significant silt was derived from the local basement. These large piles of silt(stone) preserve valuable information for reconstructing both long‐term evolution in atmospheric circulation and short‐term fluctuations in glacial–interglacial climate. Many such indicators for long have been applied to ‘recent’ (Plio‐Pleistocene) loess, but are equally applicable to ‘deep‐time’ strata.  相似文献   

2.
任倩  周长艳  夏阳  岑思弦  龙园 《冰川冻土》2019,41(4):783-792
利用ERA-Interim提供的地表感热、环流场资料和1979-2013年753站中国春季气温观测资料探讨了青藏高原(以下简称高原)东部春季感热通量与我国东部气温的关系。春季高原东部感热与我国东部气温在年际变化上存在密切的相关关系。去除9年滑动平均以后的SVD第一模态结果表明,当高原东部感热出现南弱(强)北强(弱)时,对应我国东北和华南地区的气温异常偏低(高)。当春季高原感热呈现南负北正的分布时,高层200 hPa上,高纬东风异常减弱背景西风有利于冷空气的南下,加之副热带西风急流显著增强,有利于东北地区形成气旋性环流。中低层环流场上,我国北方地区上空为一深厚的东北冷涡所控制,从对流层低层到高层,均呈现较强的气旋式环流分布。一方面,它引导西伯利亚冷空气南下,造成我国东北地区气压异常减弱,气温异常偏低;另一方面,其西侧北风异常阻滞了华南地区上空的背景西南风,不利于暖气流的输送。进一步分析得出,与PC1相关的南北温度差值场上,东亚地区上空从低纬到高纬呈现“负-正-负”的分布形势,有利于副热带西风急流在我国上空的显著增强。气旋中心上暖下冷的结构,导致位涡显著发展并向低层伸展、侵入,增强了对流层中低层的气旋性环流。气旋中心整个对流层为深厚的异常干空气,湿度负值中心与冷中心相对应,表明干冷空气异常下传发展。干侵入使得冷涡加强发展,维持了异常气旋性环流,导致春季东北、华南地区的异常降温。虽然前冬Nino3.4区海温与春季感热相关较好,但其对我国东部春季气温影响并不显著。  相似文献   

3.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

4.
《International Geology Review》2012,54(12):1528-1556
ABSTRACT

The intra-continental orogeny and tectonic evolution of the Mesozoic Yanshan fold-thrust belt (YFTB) in the northern North China Craton (NCC) have been strongly debated. Here, we focus on the Shangyi basin, located in the centre of the YFTB. An integrated analysis of sedimentary facies, palaeocurrents, clast compositions, and detrital zircon dating of sediments was adopted to determine the palaeogeography, provenance, basin evolution, and intra-continental orogenic process. The Shangyi basin comprises the well-exposed Early–early Middle Jurassic Xiahuayuan Formation and the Longmen Formation, and the Late Jurassic–Early Cretaceous Tuchengzi Formation. Based on the 18 measured sections, five facies associations – including alluvial fan, fluvial, delta, lacustrine, and eolian facies – have been identified and described in detail. The onset of the Shangyi basin was filled with fluvial, deltaic, and lacustrine deposits controlled by the normal fault bounding the northern basin, corresponding to the pre-orogeny. In the Middle Jurassic, the cobble–boulder conglomerates of alluvial fan, as molasse deposits, were compatible with the syn-orogeny of the Yanshan movement, which played a critical role in northern North China and even East Asia. After the depositional break in the Middle–Late Jurassic, the Shangyi basin, controlled by the normal fault present in the north of the basin, re-subsided and quickly expanded southward with thick sedimentation, which is correlative with the post-orogeny. Combined with A-type granites, metamorphic core complexes, mafic dikes, and rift basins of the Late Jurassic–early Early Cretaceous present in the northern NCC and Mongolia, significant extension was widespread in the northern NCC and even in northeast Asia. Moreover, vertical changes of provenance indicate that the Taihang Mountain and the Inner Mongolia palaeo-uplift (IMPU) present at the west and north of the basin, respectively, experienced uplift twice in the Middle–Late Jurassic and Early Cretaceous, resulting in a regional depositional break.  相似文献   

5.
《International Geology Review》2012,54(14):1861-1876
Currently mechanisms for the onset of the widespread aeolian dust accumulation in the Chinese Loess Plateau since 8–7 Ma remain elusive. In this study, we compile 11 records of climate (14–7 Ma) and tectonic activity of the Tibetan Plateau and its adjacent areas (15–6 Ma). The results suggest that strong tectonic activity in the northeastern Tibetan Plateau has produced massive debris and dust, which was deposited in the piedmont basins and reworked by weathering and fluviolacustrine erosion. At the same time, global cooling and uplift of the Tibetan Plateau over the period of 14–7 Ma intensified the East Asian winter monsoon and westerly winds (westerlies) while weakening the Asian summer monsoon, which led to the spread of dry land vegetation and aridification in interior China. Sediments in the piedmont basins were then exposed in the aridity and transported by the westerlies to the Chinese Loess Plateau and the North Pacific. We suggest that tectonic activity in the northeastern Tibetan Plateau and shifting global climate together triggered the widespread aeolian dust accumulation in the Chinese Loess Plateau and the North Pacific since 8–7 Ma.  相似文献   

6.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

8.
The western Qinling region of central China is situated centrally in the Kunlun, Qilian, Qinling, Longmenshan, and Songpan–Ganzi orogens. Late Palaeozoic and Early Mesozoic sediments deposited here may provide keys to understanding the tectonic evolution of the Palaeo-Tethys and collision of the North China and Yangtze Cratons. We conducted in situ U–Pb and Lu–Hf isotope analyses of 568 detrital zircons collected from Upper Palaeozoic to Mesozoic sandstones in the central Qinling block, Taohe depression, and Bailongjiang block in western Qinling to constrain the sources of these sandstones. Our results reveal that the Bailongjiang block has affinities with the Yangtze Craton, from which it may have been rifted. Therefore, the Palaeo-Tethyan Animaqen suture between the two cratons lies north of the Bailongjiang block. We identified the North China Craton as the main source for Triassic flysch in central China. It is possible that the Bailongjiang block could have blocked detritus shed from the North China Craton into the main depositional basins in the SongpanGanzi area. The dominance of 300–200 Ma detrital zircons of metamorphic origin in Lower Jurassic sandstones indicates that the Dabie–Qinling orogen was elevated during Early Jurassic time. In addition, our Lu–Hf isotopic results also reveal that Phanerozoic igneous rocks in central China were mostly products of crustal reworking with insignificant formation of juvenile crust.  相似文献   

9.
It has been established that East Asian summer monsoon intensity varies with Dansgaard–Oeschger cycles, suggesting a connection between the climates of East Asia and the North Atlantic on a millennial timescale. However, the dynamics of such a connection are still unsolved. Here we demonstrate that temporal changes in the provenance of aeolian dust in Japan Sea sediments, which we interpret to reflect changes in the westerly jet path over East Asia, exhibit variations in harmony with Dansgaard–Oeschger cycles. The dominance of dust with a Mongolian Gobi provenance during stadials suggests a westerly jet axis located to the south of the Himalaya–Tibetan Plateau throughout most of the year, whereas the co-dominance of dust from both the Taklimakan Desert and the Mongolian Gobi during interstadials suggests that the westerly jet axis jumped to the north of the Tibetan Plateau at latest in summer. As the shift of the westerly jet axis to the north of the Tibetan Plateau is closely related to the onset of the East Asian summer monsoon, changes of the westerly jet path apparently critically affect the teleconnection between the climates of Asia and North Atlantic on a millennial timescale.  相似文献   

10.
New and published paleomagnetic measurements from Trans Altai and South Gobi zones in south Mongolia document large tectonic motions in between Late Carboniferous and Triassic. Magnetic inclinations confirm equatorial position of south Mongolian terranes in Late Carboniferous–Permian times. The evolution of magnetic declinations indicates 90° anticlockwise rotation in between latest Carboniferous and Early Triassic of all studied tectonic units around the Eulerian pole located close to axis of Mongolian orocline. The anticlockwise rotation continues in Triassic being accompanied by a major drift to the north. The structural and published geochronological data suggest Carboniferous E–W shortening of the whole region resulting in N–S trend of all continental and oceanic geological units followed by orthogonal N–S shortening during Late Permian to Early Jurassic. Both paleomagnetic and geological data converge in a tectonic model of oroclinal bending of Mongolian ribbon continent, westerly back arc oceanic domain and Mongol–Okhotsk subduction zone to the east. The oroclinal bending model is consistent with the coincidence of the Eulerian pole of rotation with the structural axis of Mongolian orocline. In addition, the Mesozoic collisional tectonics is reflected by late remagnetizations due to formation of wide deformation fronts and hydrothermal activity.  相似文献   

11.
渤海湾盆地基岩地质图及其所包含的构造运动信息   总被引:10,自引:1,他引:9  
利用油气勘探资料编制的渤海湾盆地基岩地质图 ,分析了基岩露头分布及其反映的中、新生代构造运动特征。基岩地质图显示渤海湾盆地基底岩层受印支运动和燕山运动影响发育有一系列近EW向、NNE—NE向的褶皱和逆断层等挤压构造变形。基岩露头展布表明渤海湾盆地西部、北部在侏罗纪之前的剥蚀作用明显强于东部和南部地区。基岩地层形成的区域褶皱轴向及各亚构造层之间的不整合面接触关系反映出在下—中三叠统沉积之后至下—中侏罗统沉积之前的某个“关键时刻”渤海湾地区发生了一次重要的构造变革 ,导致早期的近EW向构造被NNE—NE向构造替代。而从区域应力体制来看 ,下—中侏罗统沉积之后渤海湾地区的区域构造环境发生了重要变化 ,从中生代早期的挤压构造环境变为以裂陷作用为主的构造演化时期  相似文献   

12.
位于中央造山带西段的东昆仑造山带因多期次造山和复杂演化历史而备受关注,约束其中生代隆升剥露历史,对于理解青藏高原大规模隆升在东昆仑地区的扩展及影响颇具意义。东昆仑造山带内中生代侏罗系-白垩系地层缺失严重,体现中生代以来强烈的隆升剥露过程,也是该区热演化的研究难点。本文通过对东昆仑造山带样品的磷灰石、锆石裂变径迹分析和热演化史研究,并结合东昆仑及周缘地区现有低温热年代学研究,识别出东昆仑造山带所经历的五次隆升冷却事件,即201~193Ma(早侏罗世)、172~152Ma(中-晚侏罗世)、120~98Ma(早白垩世末-早白垩世初)、98~20Ma(晚白垩世-中新世)及20~0Ma(中新世至今)。所获5个年龄组响应东昆仑地区所经历的构造热事件,其中201~193Ma年龄组响应南部羌塘地块与昆仑地块的碰撞事件;172~152Ma年龄组为中-晚侏罗世古特提斯洋闭合后,造山后伸展的构造事件的记录;120~98Ma热事件吻合拉萨地块和羌塘地块碰撞事件;98~20Ma年龄组为东昆仑地区长期缓慢剥蚀去顶过程的印证;20~0Ma的快速隆升剥露事件则为东昆仑周缘断裂系活化相伴,多期隆升剥蚀事件均得到地层不整合及沉积记录等研究成果的证实。区内剥蚀起始时间从由南到北逐渐变老,体现东昆仑地区隆升剥蚀的不均一性。  相似文献   

13.
合肥盆地中生代地层时代与源区的碎屑锆石证据   总被引:3,自引:0,他引:3  
王薇  朱光  张帅  刘程  顾承串 《地质论评》2017,63(4):955-977
合肥盆地位于大别造山带北侧、郯庐断裂带西侧,其发育过程与这两大构造带演化密切相关。本次工作对合肥盆地南部与东部出露的中生代砂岩与火山岩进行了锆石年代学研究,从而限定了各组地层的沉积时代,确定了火山岩喷发时间,指示了沉积物的源区。这些年代学数据表明,合肥盆地南部的中生代碎屑岩自下而上分别为下侏罗统防虎山组、中侏罗统圆筒山组或三尖铺组、下白垩统凤凰台组与周公山组(或黑石渡组)与上白垩统戚家桥组,其间缺失上侏罗统。盆地东部白垩系自下而上为下白垩统朱巷组与响导铺组和上白垩统张桥组。该盆地出露的毛坦厂组或白大畈组火山岩喷发时代皆为早白垩世(130~120 Ma)。盆地南部的下——中侏罗统及白垩系源区皆为大别造山带,分别对应该造山带的后造山隆升与造山后伸展隆升。而盆地东部白垩系的源区始终为东侧的张八岭隆起带,后者属于郯庐断裂带伸展活动中的上升盘。  相似文献   

14.
通过开展二维地震资料调查和重处理,结合钻井、重磁、海陆对比等新老资料开展联合解释认为:东海陆架盆地南部中生界具有分布广、厚度大、沉积中心位于东部,新生界则呈现东西厚中间薄,新生代构造单元中的台北凸起、观音凸起和雁荡凸起上均有中生界分布;白垩系较侏罗系分布更为广泛,侏罗系西部边界为雁荡凸起东侧,白垩系西部边界以瓯江凹陷西侧为界;中生界三口钻井分析结果发现了确凿的海相标志,证实了中生界东海陆架盆地发生多次海侵,结合围区沉积特征认为侏罗纪存在南北向和东西向的海侵,白垩纪主要体现为东西向的海侵;研究区中生界发育中下侏罗统、下白垩统两套烃源岩,新生界发育古新统、始新统、渐新统和中新统四套烃源岩,具有较好的油气资源前景。  相似文献   

15.
The many glacial cirques in the mountains of Romania indicate the distribution of former glacier sources, related to former climates as well as to topography. In the Transylvanian Alps (Southern Carpathians) cirque floors rise eastward at 0.714 m km−1, and cirque aspects tend ENE, confirming the importance of winds from some westerly direction. There is a contrast between two neighbouring ranges: the Făgăraş, where the favoured aspect of cirques is ENE, and the Iezer, where the tendency is stronger and to NNE. This can be explained by the Iezer Mountains being sheltered by the Făgăraş, which implies precipitation‐bearing winds from north of west at times of mountain glaciation. Palaeoglaciation levels also suggest winds from north of west, which is consistent with aeolian evidence from Pleistocene dunes, yardangs and loess features in the plains of Hungary and southwestern Romania. In northern Romania (including Ukrainian Maramureş) the influence of west winds was important, but sufficient only to give a northeastward tendency in cirque aspects. This gave stronger asymmetry than in the Transylvanian Alps, as the northward (solar radiation incidence) tendency in these marginally glaciated mountains was less diluted by wind effects. Cirque floors in northern Romania are lower also in northeast‐facing cirques. In general, cirque aspects result from several factors and the mean tendency is not downwind, but is displaced from poleward by wind and by minor effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Detrital zircon U–Pb data from sedimentary rocks in the Hengyang and Mayang basins, SE China reveal a change in basin provenance during or after Early Cretaceous. The results imply a provenance of the sediment from the North China Craton and Dabie Orogen for the Upper Triassic to Middle Jurassic sandstones and from the Indosinian granitic plutons in the South China Craton for the Lower Cretaceous sandstones. The 90–120 Ma age group in the Upper Cretaceous sandstones in the Hengyang Basin is correlated with Cretaceous volcanism along the southeastern margin of South China, suggesting a coastal mountain belt have existed during the Late Cretaceous. The sediment provenance of the basins and topographic evolution revealed by the geochronological data in this study are consistent with a Mesozoic tectonic setting from Early Mesozoic intra-continental compression through late Mesozoic Pacific Plate subduction in SE China.  相似文献   

17.
Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle–Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.  相似文献   

18.
晚中生代东亚多板块汇聚与大陆构造体系的发展   总被引:4,自引:4,他引:0  
东亚大陆原型形成于三叠纪印支造山运动旋回,其周邻环绕的三大洋(古太平洋、蒙古-鄂霍茨克洋、中特提斯洋)于早侏罗世初期几乎同时向东亚大陆俯冲,开启了东亚多板块汇聚历史。文章通过总结东亚大陆晚中生代构造变形和构造岩浆事件的新近研究成果,简述了东亚多板块汇聚产生的三个陆缘汇聚构造系统(北部蒙古-鄂霍次克碰撞造山带、东部与俯冲有关的增生造山系统、西南部班公湖-怒江缝合构造带)、陆内汇聚构造变形体系和大陆伸展构造体系。在此基础上,重新构建了东亚多板块汇聚大陆构造-岩浆演化的时间框架,将其划分为三个阶段:早侏罗世(200~170 Ma)周邻大洋板块初始俯冲阶段和陆缘裂解事件,中晚侏罗世-早白垩世早期(170~135 Ma)周邻陆缘碰撞造山或俯冲增生造山作用、陆内再生造山作用和汇聚构造体系的形成;中晚白垩世(135~80 Ma)大陆岩石圈的减薄作用和大陆伸展构造体系的发育。研究认为,晚中生代东亚多板块汇聚在时空上的有序演化和深浅构造的复合叠加,不仅产生了东亚大陆复杂的陆缘和陆内构造体系,同时控制了中国东部燕山期爆发式岩浆-成矿作用,也使东亚构造地貌发生东西翘变,早期陆缘汇聚产生的东部高原因晚期大陆岩石圈的减薄和伸展而垮塌。东亚大陆构造体系的形成和演化与联合古大陆的裂解同步,晚中生代东亚多板块汇聚完成了从东亚到欧亚大陆的演替,以东亚大陆为核心的多板块汇聚格局一直延续至新生代,可能成为未来超大陆形成的起点。   相似文献   

19.
The provenance of Cretaceous sandstones in the Banda Arc islands differs from west to east. Sandstones in Sumba and West Timor contain significant amounts of feldspar (K-feldspar and plagioclase) and lithic fragments, suggesting a recycled to magmatic arc origin. In comparison, East Timor and Tanimbar sandstones are quartz rich, and suggest a recycled origin and/or continental affinity. Heavy mineral assemblages in Sumba and West Timor indicate metamorphic and minor acidic igneous sources and include a mixture of rounded and angular zircon and tourmaline grains. In East Timor, Babar and Tanimbar, an ultimate origin from a mainly acid igneous and minor metamorphic source is interpreted, containing a mixture of rounded and angular zircon and tourmaline grains.Detrital zircon ages in all sandstones range from Archean to Mesozoic, but variations in age populations indicate local differences in source areas. Sumba and West Timor are characterised by zircon age peaks at 80–100 Ma, 200–240 Ma, 550 Ma, 1.2 Ga, 1.5 Ga and 1.8 Ma. East Timor and Tanimbar contain 80–100 Ma, 160–200 Ma, 240–280 Ma, 550 Ma and 1.5 Ga zircon peaks. Most populations are also common in Triassic and Jurassic formations along the Outer Banda Arc and in many other areas of SE Asia. However, the abundance of Jurassic and Cretaceous populations was unexpected. We interpret Cretaceous sandstones from Sumba, Timor and Tanimbar to have been deposited in SE Sundaland. Syn-sedimentary Cretaceous (68–140 Ma) sources are suggested to include the Schwaner Mountains in SW Borneo and Sumba. Material derived mainly from older recycled sediments that had their main sources in the Bird's Head, Western and Central Australia, and local sources close to Timor.  相似文献   

20.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号