首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we explore the radial structure of radiatively inefficient accretion flows (RIAFs) in the presence of an ordered magnetic field and convection. We assume the magnetic field has the toroidal and vertical components. We apply the influences of convection on equations of angular momentum and energy. The convective instability can transport the angular momentum inward or outward. We establish two cases for consideration of the effects of convection parameter on magnetized RIAFs. In the first case, we assume the convection parameter as a free parameter and in the other case we calculate convection parameter through use of mixing length theory. In both cases, the solutions show that a magnetized RIAF is very sensitive to the convection parameter and transport direction of angular momentum due to convection. Moreover, we show that the convection strength strongly depends on magnetic field and viscosity.  相似文献   

2.
3.
The physical meaning of the convection efficiency parameter of Öpik's theory is clarified by relating it to that of the mixing-length theory. A compact comparison of both theories is presented to explain the earlier findings of Gough and Weiss (1976), that Öpik's theory becomes indistinguishable from the mixing-length theory when the value of Öpik's cell depth is taken as being equal to 2.44 times the local pressure scale height for the solar convective envelope.  相似文献   

4.
The stability of radial solar acoustic oscillations is studied using a time-dependent formulation of mixing-length theory. Though the radiation field is treated somewhat simplistically with the Eddington approximation, and we appreciate that any coupling of the pulsation to the radiation field is important, for the lower frequency radial modes that have been computed this should not produce too serious an error. Instead, we have concentrated upon treating the coupling with convection as accurately as is currently possible with generalized mixing-length theory in order to learn something about its pertinence. Our principal conclusion is that, according to this theory, solar radial acoustic oscillations are expected to be stable and generated by turbulence. Moreover, the theory predicts changes in mode frequency that may, in part, explain the discrepancy between solar observations and the adiabatic pulsation frequencies of theoretical models. We also compute the amplitudes of the modes using a theory of stochastic excitation. These are in good agreement with observed power spectra.  相似文献   

5.
The boundary convection zones of hot helium white-dwarf stars (WDSs) in the range 17000 KT e30000 K are studied. Recently, an anisotropic mixing-length theory (AMLT) which determines the mixing-length parameter locally is applied for the convection zones calculation. Comparing with the calculations by using the (MLT), it is found that maximum velocity decreases appreciably, and the other boundary conditions are affected.  相似文献   

6.
By using a non-local convection theory, both the local and nonlocal convective envelope models of evolutionary series of stars with masses from 1 to 30 solar masses are calculated. The problem of supersonic convection is reviewed. The results show that the convective velocities in the stellar atmosphere are seriously overestimated by the local mixing-length theory. Convection is strongly supersonic in the atmospheres of yellow giant and super-giants, while the local mixing-length theory is used. However, it becomes subsonic for most stars when convection returns to the normal nonlocal treatment. Convection velocities increase with increase of luminosities of stars. There is still weak supersonic convection in few red and yellow giant and super-giants. It is suspected whether this supersonic convection in stellar atmospheres is true.  相似文献   

7.
We present a straightforward comparison of model calculations for the α-effect, helicities, and magnetic field line twist in the solar convection zone with magnetic field observations at atmospheric levels. The model calculations are carried out in a mixing-length approximation for the turbulence with a profile of the solar internal rotation rate obtained from helioseismic inversions. The magnetic field data consist of photospheric vector magnetograms of 422 active regions for which spatially-averaged values of the force-free twist parameter and of the current helicity density are calculated, which are then used to determine latitudinal profiles of these quantities. The comparison of the model calculations with the observations suggests that the observed twist and helicity are generated in the bulk of the convection zone, rather than in a layer close to the bottom. This supports two-layer dynamo models where the large-scale toroidal field is generated by differential rotation in a thin layer at the bottom while the α-effect is operating in the bulk of the convection zone. Our previous observational finding was that the moduli of the twist factor and of the current helicity density increase rather steeply from zero at the equator towards higher latitudes and attain a certain saturation at about 12 – 15. In our dynamo model with algebraic nonlinearity, the increase continues, however, to higher latitudes and is more gradual. This could be due to the neglect of the coupling between small-scale and large-scale current and magnetic helicities and of the latitudinal drift of the activity belts in the model.  相似文献   

8.
9.
Large-eddy simulation (LES) of turbulent convection is discussed in various versions (mixing-length theory, modal theory and spectral theory) in respect to the application to stellar convective zones. For the model construction, the non-local mixing-length formalism is suitable. However, for the determination of basic flow patterns and of mixing-length, the quasi-linear and nonlinear modal theories are useful. The eddy diffusivities are essential in these theories, and the nonlinear treatment of convection consistent with turbulent diffusivities (of effective Reynolds number of about 20 and Prandtl number of 0.4) offers a simple method of constructing stellar models without the use of the mixing-length.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

10.
熊大闰  邓李才 《天文学报》2011,52(3):177-179
1引言尽管有诸多的不满之处,由于其物理上的直观性和应用上的简单性,至今混合长理论仍几乎是唯一一个广泛用于恒星结构、演化和脉动计算的恒星对流理论.混合长理论预言,在红、黄巨星和超巨星大气中,对流是超声速的.我们曾指出,混合长理论隐含了一个假定,对流是亚声速的.对于超声速对流,无论从物理的真实性,还是从混合长公式的数学表述来看,混合长理论都是不正确的.因此超声对流的真实性是存在问题  相似文献   

11.
12.
We calculate the polarization of the radiation from an optically thick accretion disk with a vertical averaged magnetic field. The polarization arises from the scattering of light by free electrons in a magnetized disk plasma. The Faraday rotation of the polarization plane during the propagation of a photon in a medium with a magnetic field is considered as the main effect. We discuss various models of optically thick accretion disks with a vertical averaged magnetic field. Our main goal is to derive simple asymptotic formulas for the polarization of radiation in the case where the Faraday rotation angle Ψ ≫ 1 at the Thomson optical depth τ = 1. The results of our calculations allow the magnetic field strength in the region of the marginally stable orbit near a black hole to be estimated from polarimetric observations, including X-ray observations expected in the future. Since the polarization spectrum of the radiation strongly depends on the accretion disk model, a realistic physical model of the accretion disk can be determined from data on the polarization of its radiation.  相似文献   

13.
We use a two-temperature hydrodynamical formulation to determine the temperature and density structures of the post-shock accretion flows in magnetic cataclysmic variables (mCVs) and calculate the corresponding X-ray spectra. The effects of two-temperature flows are significant for systems with a massive white dwarf and a strong white-dwarf magnetic field. Our calculations show that two-temperature flows predict harder keV spectra than one-temperature flows for the same white-dwarf mass and magnetic field. This result is insensitive to whether the electrons and ions have equal temperature at the shock, but depends on the electron–ion exchange rate, relative to the rate of radiative loss along the flow. White-dwarf masses obtained by fitting the X-ray spectra of mCVs using hydrodynamic models including the two-temperature effects will be lower than those obtained using single-temperature models. The bias is more severe for systems with a massive white dwarf.  相似文献   

14.
We simulate the impact of a dipolar stellar magnetic field rooted in a classical T Tauri star on the accretion disk and the halo above using a 2.5D finite difference code. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura-Sunyaev-type eddy viscosity. The rotational shear between the star and the Keplerian disk causes the magnetic field to be wound up and stretched outwards, away from the star. Part of the field lines open and an outflow is launched. Direct disk disruption by the Lorentz force only occurs for sufficient field strength. For our model system with a solar-mass central star, an accretion rate of 10-7M⊙/a, and a viscosity parameter αSS=0.01, a field strength of 1 kG, measured at the poles on the surface of the star, was found insufficient for disk disruption.  相似文献   

15.
We have studied the structure of hot accretion flow bathed in a general large-scale magnetic field. We have considered magnetic parameters , where are the Alfvén sound speeds in three direction of cylindrical coordinate (r,φ,z). The dominant mechanism of energy dissipation is assumed to be the magnetic diffusivity due to turbulence and viscosity in the accretion flow. Also, we adopt a more realistic model for kinematic viscosity (ν=αc s H), with both c s and H as a function of magnetic field. As a result in our model, the kinematic viscosity and magnetic diffusivity (η=η 0 c s H) are not constant. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. It is found that the existence of magnetic resistivity will increase the radial infall velocity as well as sound speed and vertical thickness of the disk. However the rotational velocity of the disk decreases by the increase of magnetic resistivity. Moreover, we study the effect of three components of global magnetic field on the structure of the disk. We found out that the radial velocity and sound speed are Sub-Keplerian for all values of magnetic field parameters, but the rotational velocity can be Super-Keplerian by the increase of toroidal magnetic field. Also, Our numerical results show that all components of magnetic field can be important and have a considerable effect on velocities and vertical thickness of the disk.  相似文献   

16.
The effects of arbitrary radiative heat-loss functions and Hall current on the self-gravitational instability of a homogeneous, viscous, rotating plasma has been investigated incorporating the effects of finite electrical resistivity, finite electron inertia and thermal conductivity. A general dispersion relation is obtained using the normal mode analysis with the help of relevant linearized perturbation equations of the problem, and a modified Jeans criterion of instability is obtained. The conditions of modified Jeans instabilities and stabilities are discussed in the different cases of our interest. We find that the presence of arbitrary radiative heat-loss functions and thermal conductivity modifies the fundamental Jeans criterion of gravitational instability into a radiative instability criterion. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. For longitudinal propagation, it is found that the condition of radiative instability is independent of the magnetic field, Hall parameter, finite electron inertia, finite electrical resistivity, viscosity and rotation; but for the transverse mode of propagation it depends on the finite electrical resistivity, the strength of the magnetic field, and it is independent of rotation, electron inertia and viscosity. From the curves we find that the presence of thermal conductivity, finite electrical resistivity and density-dependent heat-loss function has a destabilizing influence, while viscosity and magnetic field have a stabilizing effect on the growth rate of an instability. The effect of arbitrary heat-loss functions is also studied on the growth rate of a radiative instability.  相似文献   

17.
The α Centauri (α Cen) binary system is a well-known stellar system with very accurate observational constraints on the structure of its component stars. In addition to the classical non-seismic constraints, there are also seismic constraints for the interior models of α Cen A and B. These two types of constraint give very different values for the age of the system. While we obtain 8.9 Gyr for the age of the system from the non-seismic constraints, the seismic constraints imply that the age is about 5.6–5.9 Gyr. There may be observational or theoretical reasons for this discrepancy, which can be found by careful consideration of similar stars. The α Cen binary system, with its solar-type components, is also suitable for testing the stellar mass dependence of the mixing-length parameter for convection derived from the binaries of Hyades. The values of the mixing-length parameter for α Cen A and B are 2.10 and 1.90 for the non-seismic constraints. If we prioritize the seismic constraints, we obtain 1.64 and 1.91 for α Cen A and B, respectively. By taking into account these two contrasting cases for stellar mass dependence of the mixing-length parameter, we derive two expressions for its time dependence, which are also compatible with the mass dependence of the mixing-length parameter derived from the Hyades stars. For assessment, these expressions should be tested in other stellar systems and clusters.  相似文献   

18.
The local mixing-length theory is extended to calculate distributions of chemical elements in the convective region. There are two different convective solutions in the convective core of the massive Main-Sequence star where convective flux of helium is positive. The condition for the convection to exist with -gradient differs from the Ledoux-Sakashita-Hayashi condition when the radiative heat loss from the convective element is taken into account.  相似文献   

19.
The observation of the hot gas surrounding Sgr A * and a few other nearby galactic nuclei imply that electron and proton mean free paths are comparable to the gas capture radius. So, the hot accretion flows are likely to proceed under week-collision conditions. Hence, thermal conduction has been suggested as a possible mechanism by which the sufficient extra heating is provided in hot advection-dominated accretion flow (ADAF) accretion discs. We consider the effects of thermal conduction in the presence of a toroidal magnetic field in an ADAF around a compact object. For a steady-state structure of such accretion flows, a set of self-similar solutions are presented. We find two types of solutions which represent high and slow accretion rate. They have different behaviours with saturated thermal conduction parameter, φ.  相似文献   

20.
The correlation between stellar activity, as measured by the indicator Δ R HK, and the Rossby number Ro in late-type stars is revisited in light of recent developments in solar dynamo theory. Different stellar interior models, based on both mixing-length theory and the full spectrum of turbulence, are used in order to see to what extent the correlation of activity with Rossby number is model dependent, or otherwise can be considered universal. Although we find some modest model dependence, we find that the correlation of activity with Rossby number is significantly better than with rotation period alone for all the models we consider. Dynamo theory suggests that activity should scale with the dynamo number. A current model of the solar dynamo, the so-called interface dynamo, proposes that the amplification of the toroidal magnetic field by differential rotation (the ω -effect) and the production of the poloidal magnetic field from toroidal by helical turbulence (the α -effect) take place in different, adjacent layers near the base of the convection zone. A new scale analysis based on the interface dynamo shows that the appropriate dynamo number does not depend on the Rossby number alone, but also depends on an additional dimensionless factor related to the differential rotation. This leads to a new interpretation of the correlation between activity and Rossby number, which in turn leads to some conclusions about the magnitude of differential rotation in the dynamo layers of late-type main-sequence stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号