首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
海底天然气渗漏系统水合物成藏动力学及其资源评价方法   总被引:8,自引:1,他引:7  
根据海底天然气渗漏系统沉淀水合物的动力学模型,计算了海底渗漏系统中渗漏天然气沉淀为水合物的比例。如果BushHill渗漏系统海底水合物或喷溢天然气的化学组成是渗漏系统气源天然气通过沉淀水合物转变而成,则需要约3. 3% ~21. 7% (平均12. 9% )的渗漏天然气在海底沉淀为水合物。结合渗漏系统的活动时间(1万年)和天然气流量(800t/a),沉淀在墨西哥湾GC185区BushHill渗漏系统中的水合物天然气资源为0. 37×109 ~2. 43×109 m3,平均为1. 45×109 m3,与体积和含量评价方法获得的结果基本一致。  相似文献   

2.
多年冻土区天然气水合物研究综述   总被引:6,自引:1,他引:5  
由于多年冻土区天然气水合物的潜在资源价值和对气候、环境的影响,各国纷纷开展了大量的研究,取得了很好的研究进展。本文主要分析了天然气水合物与多年冻土间的关系、多年冻土区天然气水合物的蕴藏情况以及典型多年冻土区天然气水合物研究现状。其结果表明多年冻土控制了天然气水合物形成的温压条件,且在多年冻土层间发现具自保护效应的天然气水合物。同时多年冻土可影响分散性土体中游离气体的聚集和迁移,多年冻土融化可提高孔隙水压力。目前多年冻土区天然气水合物的蕴藏情况的估算并不完整,各国仅对典型多年冻土区天然气水合物储量进行了初步的估算。天然气水合物储量估算结果表明,在美国阿拉斯加地区大约为1.0~1.2×1012 m3,加拿大马更些三角洲Beaufort海地区大约为1.6×1013 m3,俄罗斯西西伯利亚盆地250 m深度范围内可达1.7×1013 m3。我国青藏高原多年冻土区亟待搞清天然气水合物存在与否的直接证据和储量估算等关键问题。  相似文献   

3.
海底天然气渗漏系统演化特征及对形成水合物的影响   总被引:9,自引:0,他引:9  
通过天然气沉淀水合物的动力学模拟计算,研究了墨西哥湾GC185区BushHill海底天然气渗漏系统的演化特征及对水合物沉淀的影响。渗漏早期,天然气渗漏速度大(q>18.4kg/m2-a),海底沉积以泥火山为主,渗漏天然气具有与气源天然气几乎一致的组成,形成的水合物具有最重的天然气成分。渗漏晚期,天然气渗漏速度很慢(q<0.55kg/m2-a),在海底附近没有水合物沉淀,主要以冷泉碳酸盐岩发育为主,水合物产于海底之下一定深度的沉积层中。介于二者间的渗漏中期(q:0.55~18.4kg/m2-a),海底发育水合物、自养生物群为特征,渗漏速度控制了水合物和渗漏天然气的组成及沉淀水合物的天然气比例。BushHill渗漏系统近10年的深潜重复采样显示,渗漏天然气和水合物天然气的化学组成在时空上是多变的,相对应的渗漏速度在时间上的变化约为3倍,在空间上的变化近2个数量级。  相似文献   

4.
祁连山冻土区天然气水合物DK-1、DK-2、DK-3、DK-4号钻孔揭示,该区天然气水合物及其异常主要产出于破碎岩层裂隙中和砂岩孔隙中,根据不同的赋存类型分别赋予具体地质含义,并运用体积法建立了2种产状天然气水合物资源量的计算方法。基于野外地质观测统计数据和室内分析测试结果,在钻探区约40×104m2的范围内,计算得到砂岩孔隙中的天然气水合物资源量约为6.24×104m3天然气,破碎岩层裂隙中的天然气水合物资源量约为88×104m3天然气,总的资源量约为94.2×104m3天然气。可以看出,钻探区中产于破碎岩层裂隙中的天然气水合物资源量是主体,这与钻探中肉眼观察的结果一致。  相似文献   

5.
南海天然气水合物稳定带厚度及资源量估算   总被引:8,自引:2,他引:6  
葛倩  王家生  向华  胡高伟 《地球科学》2006,31(2):245-249
中国的南海一直被人们认为蕴藏着丰富的天然气水合物资源,综合中国南海的水深、地热梯度及底部水温等地质资料,运用VisualBasic.Net编程分析在该海域范围内天然气水合物稳定带厚度,讨论其分布特征,并以此来评估该区域的水合物资源量.结果表明当地热梯度为0.06℃/m,在区域1中可能存在天然气水合物,其稳定带的最大厚度可达400 m,天然气水合物分布较为规则,从外向内逐渐增厚.但在区域2中由于受到水深和地热等因素的影响不存在天然气水合物,此时天然气水合物的资源量约为0.55×104 km3;当地热梯度随机取值时,该区的天然气水合物资源量约为0.57×104 km3.通过对地热梯度取不同的值,估算得到在该研究区天然气水合物的资源量约为0.6×104 km3.   相似文献   

6.
为配合天然气水合物资源勘探工作,2010年在木里地区开展了高精度反射地震方法探测天然气水合物的有效性试验研究。反射地震采用192道接收,道间距2 m,炮间距8 m,覆盖次数24次,每道采用6个60 Hz检波器单点组合接收。激发震源使用炸药,井深为3~4 m,激发药量为1.2~2.4 kg。采用该工作方法得到地震剖面的信噪比和分辨率较高,构造形态特征明显。综合分析解释反射地震和测井及地质资料,推断解释了天然气水合物富集地带,提出了验证孔位。2013年,该探测结果得到了DK9钻孔验证,在距离已发现天然气水合物DK3钻孔SE方向约450 m处发现了厚度较大的天然气水合物。试验研究结果表明:在天然气水合物含量较低的测区,利用地震方法直接探测天然气水合物难度较大,但综合分析测区物化探和地质资料,结合钻井资料,能够通过反射地震探测天然气水合物的富集地带。  相似文献   

7.
天然气水合物是一种具有广阔前景的清洁能源资源,但目前对海洋天然气水合物预测方法有多种,利用浅层沉积物孔隙水地球化学示踪沉积层深部天然气水合物的方法,可以为海域天然气水合物前期普查提供一个廉价有效的途径。利用南海北部东沙海域D-5、D-8和D-F站位沉积物孔隙水硫酸根离子、溶解无机碳、钙离子和镁离子在剖面上的分布特征,模拟了3个站位甲烷供给通量及天然气水合物可能的发育特征。计算结果表明,D-5、D-8和D-F站位到达甲烷-硫酸根氧化界面的甲烷通量分别为11.97×10~(–3) mol/(m~2·a)、5.98×10~(–3) mol/(m~2·a)和26.45×10~(–3) mol/(m~2·a),天然气水合物形成的最大温度梯度分别为0.058℃/m、0.020℃/m和0.149℃/m,计算的天然气水合物顶界深度分别为海底之下170~197 m、378~386 m和79~98 m,甲烷通量对天然气水合物顶界影响大,温度对天然气水合物发育顶界影响较小。结合研究区似海底反射层发育特征判断,D-5和D-F站位深部沉积层中可能有天然气水合物,D-8站位应该没有天然气水合物发育。  相似文献   

8.
左汝强  李艺 《探矿工程》2017,44(12):1-20
日本在实施天然气水合物研发计划(MH21)的第一阶段(2001—2008)及之后,作为合作伙伴,参加了加拿大Mallik和美国阿拉斯加陆域永冻层的水合物试采工程项目,并在本国南海海槽分别于2000年和2004年实施了水合物探井施工和多井钻探取样调查。从MH21第二阶段(2009—2015)开始,日本加强了对南海海槽东部的钻探、取样调查,运用新研发的CDEX hybrid PCS系统采取保压岩心;运用PCCT压力岩心测试鉴定仪器,对含水合物沉积地层的岩样作精密测试分析;提出水合物开采环境效应评估(EIA)研究战略,运用综合方法认真实施EIA调查,以及对海域水合物生产环境监测系统,包括海底甲烷泄漏监测仪(MLMS)、海底变形测量仪(SDMS)等予以布署。2013年3月12—18日,日本在南海海槽东部深水水合物储层实施了第一次天然气水合物的试采。六日内累积生产气量约120000 m3,平均日产气量20000 m3。这是世界上第一次海域天然气水合物成功的试采工程,是国际天然气水合物开发史上的一座里程碑。但是,天然气水合物的商业化开采在国际上将是一个艰难、漫长的过程。  相似文献   

9.
刘玉山  吴必豪 《矿床地质》2011,30(4):711-724
天然气水合物分为大陆型和海洋型两大类.大陆型天然气水合物矿床常赋存于永久冻土带,如西伯利亚,加拿大北部,阿拉斯加.近年来,中国在青海木里的冻土带也发现了天然气水合物,它们赋存在l000m深的砂岩和泥岩层中.大陆天然气水合物的资源量是相当巨大的,估计约为(1~7.4)×1014m3甲烷.现在科学家已经研究出从冻土带水合物...  相似文献   

10.
利用Milkov和Sassen的模型计算了目前及末次盛冰期时西沙海槽天然气水合物的稳定带(GHSZ) 厚度及资源量, 讨论了末次盛冰期以来海洋底水温度增加和海平面升高对西沙海槽天然气水合物储库变化的影响.计算结果表明, 底水温度增加使GHSZ厚度减薄, 资源量减少; 而海平面上升使GHSZ厚度增加, 资源量增加, 但底水温度变化对GHSZ厚度和资源量的影响比海平面变化的影响更大.西沙海槽末次盛冰期时GHSZ平均厚度约为299m, 天然气水合物资源量约为2.87×1010m3, 甲烷数量约为4.71×1012m3; 目前的GHSZ平均厚度约为287m, 天然气水合物资源量约为2.76×1010m3, 甲烷数量约为4.52×1012m3.由此可见, 自末次盛冰期以来西沙海槽的GHSZ平均厚度减薄了~12m, 大约1.1×109m3的天然气水合物分解释放了1.9×1011m3的甲烷, 这些甲烷可能对环境产生了重要影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号