首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用宜昌市国家基本气象站1956—2013年共58 a的逐分钟降雨过程资料,分别利用PC法和芝加哥法推求宜昌市区重现期2 a历时30、60、90、120、150、180 min以5 min为单位时段的设计暴雨雨型,并分析比较两种方法所得结果的差异。结果表明:利用PC法推求的宜昌市区各降雨历时设计暴雨雨型基本呈单峰型,历时30、60 min设计暴雨雨型雨峰位置基本处于降雨过程的1/3分位,而历时120、150、180 min基本处于甚至超前于1/4分位;利用芝加哥法推求设计的宜昌市区暴雨雨型雨峰位置基本处于甚至超前于降雨过程的1/3分位,雨峰降雨强度虽随着历时的增加整体呈现减小—增大—减小的波动趋势,但是峰值差异较小;PC法和芝加哥法推求的宜昌市区短历时设计暴雨雨型都具有"单峰型、速度快、高强度、持续久"的特点,因此当短历时暴雨发生时,水利、水文、住建、防洪等部门应在第一时间做好排水排涝准备。  相似文献   

2.
利用吉林市1961—2017年分钟降雨量数据,分别采用年最大值法和年多个样法选样,P-Ⅲ型、指数型和Gumbel分布拟合频率分布曲线,根据误差最小原则选择最佳取样及拟合方法,采用最小二乘法求解暴雨强度公式参数,并将新旧暴雨强度公式进行比较,再利用推求出的公式参数模拟吉林市短历时芝加哥雨型。结果表明:通过年最大值法选样和P-Ⅲ型频率分布曲线拟合得到的暴雨强度公式精度最高。5~20 min历时新编暴雨强度公式计算的暴雨强度值与旧编公式相当或偏小,30~180 min历时新编暴雨强度公式计算的暴雨强度值偏大。在相同重现期下,随着降雨历时的延长,雨强变化率逐渐加大。吉林市短历时雨型的综合雨峰位置系数为0.389。30~180 min历时雨型形态均为单峰型,各历时瞬时雨强峰值接近,雨峰位置位于偏整场降雨过程的1/2处之前。累计雨量的变化特征与设计暴雨雨型形态一致。  相似文献   

3.
选取北京市观象台1941—2013年共73 a的逐分钟降雨量资料,以60 min和120 min两个历时一年一遇的降雨量作为临界阈值,提取降水场次样本,采用PilgrimCordery法推求北京市短历时设计暴雨雨型。各历时的雨型样本选样分别采用自然降雨过程(方法一)和最大历时过程(方法二)。结果表明:两种方法的60 min和120 min雨型分布形状一致,均为单峰型,雨峰位置靠前;但在降雨量分配比例上,两种方法存在差异,自然降雨过程的60 min和120 min雨型雨峰所在时刻降雨量占总雨量的比例比最大历时过程的分别高3.79%和5.83%。  相似文献   

4.
根据1973—2014年葫芦岛市分钟降雨资料建立暴雨统计样本,通过对比分析确定采用年最大值法,基于P-Ⅲ型概率分布曲线拟合,推求出新一代暴雨强度公式。对比新、旧暴雨强度公式,5~30 min历时各重现期雨强以旧暴雨强度公式计算结果偏大,新、旧公式计算的45 min历时各重现期雨强基本相当,60~180 min历时各重现期雨强以新暴雨强度公式计算结果较大。在此基础上,开展葫芦岛市短历时暴雨雨型研究。统计确定雨峰位置系数为0.32,采用芝加哥雨型进行短历时暴雨雨型分析,重现期2 a、降雨历时60、90、120、150、180 min的累计降雨量在38.73~66.99 mm,均以初期累计降雨增长较慢,雨峰前后增长速度较快,之后降雨增速明显放缓。  相似文献   

5.
利用柳州国家气象观测站1975~2014年共40a的逐分钟降雨过程资料,采用芝加哥法分析研究柳州市区设计暴雨雨型。结果表明:各重现期下柳州相同降雨历时设计暴雨雨型的形态一致,各短历时雨型大体呈单峰型;各短历时设计暴雨雨型雨峰位置基本处于整场降雨过程的1/3分位,降雨强度随着重现期的延长而增大;相同重现期下雨峰处降雨强度值随历时的增加呈现"减小—增大—减小"的波动趋势且历时120min的雨峰峰值最大。  相似文献   

6.
设计暴雨研究是城市排水防涝工程建设的重要基础。基于1981—2020年雄安新区3个地面气象观测站的降雨资料,对其降雨量和暴雨日数的时间变化特征进行了分析;采用雄县分钟级降雨数据,通过年最大值法选样,为兼顾长、短历时降雨样本的拟合优度,选用P-III型曲线对降雨数据进行理论频率分析,通过MATLAB的高斯—牛顿法求解暴雨强度公式中的参数,最终得到长历时综合暴雨强度公式,根据同频率分析法对雄县1440 min的设计暴雨雨型进行推求。结果表明:雄安新区多年平均降雨量为490.4 mm,暴雨日数为4.4 d;2000—2020年暴雨日数呈增多趋势,尤以大暴雨增多明显,近10 a大暴雨发生日数占暴雨日数的比率最大,为20.8%,较21世纪初10 a大将近7倍。编制的长历时综合暴雨强度公式,可计算5—1440 min任意历时、2—100 a任意重现期的设计暴雨。雄县以5 min为步长的1440 min设计暴雨雨型为单峰型,雨峰系数为0.806,结合所编制的长历时综合暴雨强度公式,可推求任意指定重现期下1440 min的设计雨型。  相似文献   

7.
利用湖北省宜昌市宜昌基准站1956—2013年逐分钟降雨资料,对宜昌市区暴雨雨型的演变特征进行分析,并采用同频率分析法推求该地区历时6 h、12 h、24 h的设计暴雨雨型。结果表明:宜昌市区1956—2013年汛期(5—9月)前期易发生持续12~24 h或24 h以上、降雨量50~100 mm的暴雨,而中后期易发生持续12 h以下、降雨量30~70 mm的暴雨。1956—2013年,宜昌市区短历时、中长历时、长历时暴雨和大暴雨发生次数缓慢增加,而特长历时大暴雨明显减少。其中,短历时暴雨的峰值趋于增大,持续时间趋于增加;中长历时暴雨的小时雨量无显著变化,但雨量分布、雨峰趋于后移,持续时间趋于增加;长历时暴雨的小时雨量趋于减少,雨量分布、雨峰趋于前移,持续时间趋于缩短。宜昌市区历时6 h、12 h、24 h的设计暴雨雨型均为典型的单峰型,雨峰分别位于第20、34、113时段。  相似文献   

8.
基于山西临汾国家基本气象站1981—2013年逐日雨量资料,对临汾市城区暴雨强度公式修订的基础上,采用芝加哥雨型法,对临汾市城区短历时暴雨雨型设计进行分析研究。结果表明:1981—2013年山西临汾短历时最大降水量年际变化较大,且随着降水历时的延长,年最大降水量极值有增大趋势;年最强降水比较集中,多出现在7月上旬到8月中旬,且在午后出现次数较多。除历时30 min和180 min外,临汾城区短历时暴雨雨峰位置略偏前,短历时强降雨较为集中。瞬时雨强呈先增后减的单峰型分布,各历时的瞬时雨强变化趋势以及分布型基本一致,只是在时间分配上稍有差别,且雨强随着重现期增大而增大。当重现期相同时,雨峰处降雨强度随着历时的延长整体呈现减小、增大、再减小的波动趋势,但峰值雨强差异较小。  相似文献   

9.
基于2008—2016年昆山市自动气象站逐分钟降水观测数据,分别利用芝加哥雨型法和PilgrimCordery雨型法,推求昆山市不同生态系统在不同重现期下60 min和120 min短历时设计暴雨雨型,并对比分析两种雨型推求方法的结果以及不同生态系统的雨型计算结果。结果表明:推求昆山市60 min历时设计暴雨雨型分布时,芝加哥雨型法和PilgrimCordery雨型法的结果基本一致,为单峰型雨型,雨峰位置位于中间偏前;推求120 min历时设计暴雨雨型分布时,芝加哥雨型法结果为单峰型,PilgrimCordery雨型法为多峰型,但两种方法求得的雨峰位置都位于中间偏前。在历时60 min和120 min时,芝加哥雨型法计算出的平均最大分段降水量显著大于PilgrimCordery法和实际雨样的结果,PilgrimCordery法的结果略小于实际雨样。昆山市不同地区的降水会受到生态系统类型的影响,以农田生态系统的影响最为明显,两种雨型推求方法的结果均表示,农田生态系统的最大分段降水量是5种生态系统中最大的。  相似文献   

10.
利用重庆主城区沙坪坝国家基本气象站1961—2017年逐分钟降雨资料,根据暴雨成因选取大范围区域暴雨型和局地强对流天气型两类短历时暴雨样本,采用PilgrimCordery法推求设计暴雨雨型,并比较两类天气系统下短历时设计暴雨雨型的差异。结果显示:区域暴雨型样本数占总样本数52.6%,60 min历时单峰型和均匀型占比分别为36.7%和26.7%,120 min历时多为单峰型且峰值在中部,180 min历时雨型主要为峰值在前部的单峰型。而强对流天气型样本数占总样本数的47.4%,短历时雨型基本都为峰值在前部的单峰型。相比区域暴雨型,强对流天气型设计暴雨雨型峰值位置出现较早,峰值强度偏强,降雨累积过程更快。60 min、120 min和180 min峰值分别提前5 min、35 min和20 min,10 a重现期峰值强度分别偏强0.5 mm·min~(-1)、0.9 mm·min~(-1)和0.9 mm·min~(-1)。在设计降雨量相同的情况下,强对流天气型平均积水时间更长,积水量更大,导致的内涝问题更突出。  相似文献   

11.
镇江市新一代暴雨强度公式研制及雨型设计   总被引:3,自引:1,他引:2  
用镇江市1980—2013年连续34 a的降水观测资料,通过数据审核处理建立暴雨统计样本。对镇江市近34 a的暴雨特征进行统计分析,发现其存在较为显著的阶段性变化特征,具备开展新一代暴雨强度公式研制的必要。基于此,采用年最大值法展开修订,基于皮尔逊III型分布确定概率曲线并进行参数推求,研制了镇江市新一代暴雨强度公式。在此基础上,开展镇江市短历时暴雨雨型设计研究。统计发现:短历时暴雨以单峰型分布为主,其雨峰位置大部分出现在整个暴雨过程的前半段。进而采用芝加哥法雨型进行雨型设计,确定雨峰位置系数,得到镇江市短历时暴雨的雨型设计过程,短历时暴雨的瞬时雨强最高达5.9 mm/min,过程累计降水最高达105 mm。  相似文献   

12.
本文基于兰州市国家基本气象站1960~2014年降雨资料,通过直接拟合、耿贝尔分布、皮尔逊-Ⅲ型分布研究兰州市暴雨强度公式。选用芝加哥雨型来研究兰州市雨峰系数,结合暴雨强度公式确定短历时暴雨雨型。结果表明:(1)皮尔逊-Ⅲ型分布要优于耿贝尔分布和直接拟合,其调整后的兰州市暴雨公式中1年雨力参数A1为5.532mm/min,重现期调整参数c为3.198,降雨历时偏移参数b为14.92min,n为0.942,平均绝对均方差为0.036mm/min;(2)皮尔逊-Ⅲ分布能够满足不同的降雨历时以及更久的重现期。降雨历时小于90min或者重现期大于20年的暴雨模拟精确度更高,重现期在2~20a的暴雨平均绝对均方差最小为0.03mm/min。   相似文献   

13.
天津市夏季降水日变化特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用1954-2007年天津市夏季逐时自记降水资料,分析了天津市夏季降水(包括逐小时降水量、降水频次、降水强度以及不同持续时间降水)日变化规律。结果表明:天津市一日内不同时次的多年累积降水量具有显著的日变化特征,呈明显的双峰型,高值分别出现在午后17时和午夜02时。逐小时降水强度与降水量的变化特征非常一致,而多年累积降水频次在凌晨02时至08时较高,之后至11时逐步降低,11时至24时变化不大。降水量与降水频次及降水强度的关系均达到显著性水平(P < 0.001),但逐小时降水强度与降水量相关性明显高于降水频次,表明降水量变化与降水强度有直接的关系,而降水频次对累积降水量的贡献占较小的权重。持续不同时间降水事件的发生次数在一日内的变化特征明显不同,长时性降水峰值集中在清晨,而短时性降水尤其是1-3 h降水主要以午后为主。  相似文献   

14.
1967-2006年中国东南沿海盛夏降水强度变化特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用中国地面台站逐日和逐时降水资料,对中国东南沿海地区近40年(1967-2006年)盛夏(7-8月)降水强度变化特征进行了分析.逐日降水资料的分析结果表明我国东南沿海盛夏的降水量呈显著增加趋势,且主要是由日降水强度增强所致,日降水频次的贡献不显著.结合逐时降水资料的分析结果发现,东南沿海地区虽然降水日的平均降水时数显著增加,平均逐时降水强度也显著增强.通过按降水持续时数确定的降水事件分类分析发现,短持续降水(≤4h)平均小时强度显著增强,具体表现为弱小时强度降水减少和强降水增多.长持续性降水(≥15h)平均小时强度减弱,但降水频次增加.由于长持续性降水的平均小时降水强度远大于短时降水平均小时强度,对整体小时强度增强是正贡献.总之,我国东南沿海盛夏平均降水强度增强主要来自长持续性降水频次的增多、短时强降水频次的增多和短时弱降水频次的减少.  相似文献   

15.
Compared with daily rainfall amount, hourly rainfall rate represents rainfall intensity and the rainfall process more accurately, and thus is more suitable for studies of extreme rainfall events. The distribution functions of annual maximum hourly rainfall amount at 321 stations in China are quantified by the Generalized Extreme Value(GEV) distribution, and the threshold values of hourly rainfall intensity for 5-yr return period are estimated. The spatial distributions of the threshold exhibit significant regional diferences, with low values in northwestern China and high values in northern China, the mid and lower reaches of the Yangtze River valley, the coastal areas of southern China, and the Sichuan basin. The duration and seasonality of the extreme precipitation with 5-yr return periods are further analyzed. The average duration of extreme precipitation events exceeds 12 h in the coastal regions, Yangtze River valley, and eastern slope of the Tibetan Plateau. The duration in northern China is relatively short. The extreme precipitation events develop more rapidly in mountain regions with large elevation diferences than those in the plain areas. There are records of extreme precipitation in as early as April in southern China while extreme rainfall in northern China will not occur until late June. At most stations in China, the latest extreme precipitation happens in August–September. The extreme rainfall later than October can be found only at a small portion of stations in the coastal regions, the southern end of the Asian continent, and the southern part of southwestern China.  相似文献   

16.
从小时尺度考察中国中东部极端降水的持续性和季节特征   总被引:7,自引:1,他引:6  
李建  宇如聪  孙蟩 《气象学报》2013,71(4):652-659
相对于日降水量,小时尺度降水资料可以更准确地反映降水强度并描述降水过程,因而更适用于极端降水阈值确定及其特性研究.利用广义极值分布估计中国321个站最大小时降水量的分布函数,确定了5a重现期的小时降水强度阈值.阈值的空间分布呈现出明显的地域差异,西北地区阈值偏低,华北地区、长江中下游地区、华南沿海地区和四川盆地西部地区为高阈值中心.取各站5a一遇极端降水事件对其持续性特征和季节特征进行分析,发现在沿海地区、长江流域和青藏高原东坡极端降水事件的平均持续时间较长(超过12h);中国北部地区持续时间较短.在具有较大海拔落差的复杂地形区,极端降水事件较平原地区更快地发展到峰值.华南地区4月就可有极端降水事件出现,而中国北方地区要到6月底才出现极端降水;全中国大部分地区的年最晚极端降水在8-9月,但沿海地区、大陆南端和西南地区南部的少数站点在10月以后仍有极端降水发生.  相似文献   

17.
夏季中国中东部不同历时降水时空分布特征   总被引:7,自引:2,他引:5  
利用1961~2012年台站逐时降水资料,分析了夏季中国中东部不同历时降水的主要气候分布和长期变化特征,为深入认识其时空变化规律和形成机理奠定基础。分析结果表明,降水事件的平均历时由南向北呈"短—长—短"分布型,华南和北方地区以6 h以下的短历时降水为主;而中部地区(28°N~37°N)6 h以上长历时降水占总降水量60%以上。随着降水历时的增加,小雨事件(0.1~1.0 mm/h)的发生概率降低,中雨事件(1.1~10.0 mm/h)的发生概率升高;大雨、暴雨事件(10.0 mm/h)更易出现在35°N以南历时偏短的降水事件中。1961~2012年,中国中东部总降水量呈"南升北降"的趋势分布,夏季南方大部分地区降水强度、时数和事件数均呈上升趋势;而北方地区降水时数和事件数显著减少,不过降水强度呈增强趋势。中东部降水历时总体呈上升趋势,尤其以我国长江与黄河之间的中部地区变化最为显著。同时,该地区短历时(1~6 h)降水无显著的年代际转折,长历时(6 h)降水的年代际增加是20世纪70年代末至20世纪90年代初降水增多的主要原因。20世纪90年代初期以来,南方地区降水的年代际增多则是长、短降水共同作用的结果,但超过6 h降水的影响范围更广,且影响中心较短历时降水偏北。  相似文献   

18.
The analysis of rainfall frequency is an important step in hydrology and water resources engineering. However, a lack of measuring stations, short duration of statistical periods, and unreliable outliers are among the most important problems when designing hydrology projects. In this study, regional rainfall analysis based on L-moments was used to overcome these problems in the Eastern Black Sea Basin (EBSB) of Turkey. The L-moments technique was applied at all stages of the regional analysis, including determining homogeneous regions, in addition to fitting and estimating parameters from appropriate distribution functions in each homogeneous region. We studied annual maximum rainfall height values of various durations (5 min to 24 h) from seven rain gauge stations located in the EBSB in Turkey, which have gauging periods of 39 to 70 years. Homogeneity of the region was evaluated by using L-moments. The goodness-of-fit criterion for each distribution was defined as the ZDIST statistics, depending on various distributions, including generalized logistic (GLO), generalized extreme value (GEV), generalized normal (GNO), Pearson type 3 (PE3), and generalized Pareto (GPA). GLO and GEV determined the best distributions for short (5 to 30 min) and long (1 to 24 h) period data, respectively. Based on the distribution functions, the governing equations were extracted for calculation of intensities of 2, 5, 25, 50, 100, 250, and 500 years return periods (T). Subsequently, the T values for different rainfall intensities were estimated using data quantifying maximum amount of rainfall at different times. Using these T values, duration, altitude, latitude, and longitude values were used as independent variables in a regression model of the data. The determination coefficient (R 2) value indicated that the model yields suitable results for the regional relationship of intensity–duration–frequency (IDF), which is necessary for the design of hydraulic structures in small and medium sized catchments.  相似文献   

19.
2012年7月4日河南大暴雨过程的短时强降水成因分析   总被引:6,自引:0,他引:6  
利用常规观测资料、雷达和区域自动站资料及NCEP再分析资料,对2012年7月4-5日河南黄淮大暴雨过程的成因进行分析。结果表明:大暴雨过程发生于副热带高压加强西伸北抬的背景下,由两种性质的强降水构成,一种强降水持续时间短但强度大,而另一种持续时间长但强度相对弱。低涡切变是此次暴雨过程的主要影响系统,低涡东南象限的低空西南急流不仅为暴雨过程提供了充分的水汽、能量条件,而且为强降水的发生提供了动力辐合条件。冷空气及地面辐合线对强降水的形成起触发作用。午后强降水持续时间短、强度大,主要是由暖切变附近迅速发展的伴有中气旋的强降水对流单体造成的,中气旋活动频繁,最强降水位于“人”字形雨带交叉点处;夜间持续时间长、强度相对弱的强降水由强降水回波“列车效应”造成,中气旋不活跃,但地形对夜间降水有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号