首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于森林资源清查的江西省森林贮碳功能研究   总被引:2,自引:0,他引:2  
利用江西省1999--2003年森林资源二类清查资料,结合大岗山森林生态站的实测数据以及已公布的调查资料,运用材积源生物量法对江西省森林的碳储量和碳密度进行了估算和评价。结果表明,江西省不同类型森林乔木层碳密度,由大到小依次为硬阔林、针阔混交林、毛竹林、国外松林、杉木林、软阔林、灌木林、马尾松林和经济林,且碳密度随着林龄的增大而增大,随人口密度的增大而减小。森林碳密度土壤层最大,植被层次之,枯落物层最小。不同森林类型乔木层碳储量,由大到小依次为杉木林、硬阔林、马尾松林、毛竹林、灌木林、国外松林、经济林、针阔混交林、软阔林。从森林类型分布看,除杉木和国外松林外,其他森林类型天然林乔木层碳储量远大于人工林;从地理分布看,除南昌、萍乡、新余三市外,其余各市均是天然林乔木层碳储量远大于人工林。不同年龄森林乔木层碳储量,由大到小依次为中龄林、幼龄林、近熟林、成熟林、过熟林。不同森林碳储量由大到小依次为杉木林、马尾松林、硬阔林、灌木林、经济林、毛竹林、针阔混交林、国外松林和软阔林,南部和中西部要高于中东部和北部。江西省森林总碳储量为1.5Gt,占全国森林总碳储量的5.33%。  相似文献   

2.
In order to study the effects of a change in the economic system on carbon balance at a national scale, a balance of the carbon influx and effluxes was prepared for forest ecosystems in Poland for 1988, and was repeated for 1990. The year 1988 was the first year of drastic economic changes (and severe crises) in Poland. Two entirely different approaches were used to estimate the carbon influx into a forest ecosystem. The forest inventory approach was based on data from conventional measurements of merchantable timber in forests, whereas the carbon flux and allocation approach was based on the estimate of net photosynthetic productivity of forest ecosystems to calculate the carbon influx. Results from both approaches were within the range 1.17 to 5.77t C/ha/yr which most likely defined lower and upper limits for the carbon influx into forest ecosystems in Poland. On the national scale, the carbon influx into Polish forest ecosystems was estimated by the forest inventory approach to be about 12.8 Mt C/yr. This result was similar for both years. Efflux of carbon from Polish forest ecosystems resulted almost entirely from the decay of logging residues. The efflux in 1990 (3.82 Mt C/yr) was about 26% lower than that in 1988. Storage of the carbon in Polish forest ecosystems (including an estimate of the carbon pool in forest soils) was 1.8% greater in 1990 (2518 Mt C) than in 1988, when it equalled 2473 Mt C.  相似文献   

3.
中国森林乔木林碳储量及其固碳潜力预测   总被引:5,自引:0,他引:5  
加强对我国森林碳储量和固碳潜力的研究,是制定中国增汇减排政策的重要依据,对我国国际气候谈判和全面了解森林碳汇潜力具有重要作用。利用我国第七次和第八次森林资源清查中各优势树种的面积和蓄积量数据,采用IPCC材积源生物量法(volume-biomass method),估算了我国森林(乔木林)碳储量和碳密度及其分布,分析我国不同省份天然乔木林和人工乔木林碳储量龄组结构特征;建立分区域、分起源主要优势树种的单位面积蓄积-林龄Logistic生长方程,结合我国森林2020年和2030年面积蓄积增长目标,预测我国乔木林2010—2050年间碳汇潜力。结果表明:第八次清查期间中国乔木林总碳储量为6135.68 Tg,碳密度为37.28 Mg/hm 2;天然乔木林和人工乔木林的碳储量分别为5246.07 Tg和889.61 Tg,分别占总碳储量的85.50%和14.50%。到2050年,中国乔木林和新造林的总碳储量和平均碳密度将分别达到11125.76 Tg和52.52 Mg/hm 2,与2010年相比分别增加81%和41%。分析结果表明中国乔木林有很大的碳汇潜力,将在应对和减缓全球气候变化中发挥重要作用。  相似文献   

4.
After the collapse of the Soviet Union, the forestry sector in Russia underwent substantial changes: the state forestry sector was decentralized, the timber industry was privatized, and timber use rights were allocated through short- and long-term leases. To date, there has been no quantitative assessment of the drivers of timber harvesting in European Russia following these changes. In this paper we estimate an econometric model of timber harvesting using remote sensing estimations of forest disturbance from 1990–2000 to 2000–2005 as our dependent variable. We aggregate forest disturbance to administrative districts – equivalent to counties in the United States – and test the impact of several biophysical and economic factors on timber harvesting. Additionally, we examine the impact that regions – equivalent to states in the United States and the main level of decentralized governance in Russia – have on timber harvesting by estimating the influence of regional-level effects on forest disturbance in our econometric model. Russian regions diverged considerably in political and economic conditions after the collapse of the Soviet Union, and the question is if these variations impacted timber harvesting after controlling for district-level biophysical and economic drivers. We find that the most important drivers of timber harvesting at the district level are road density, the percent of evergreen forest, and the total area of forest. The influence of these variables on timber harvesting changed over time and there was more harvesting closer to urban areas in 2000–2005. Even though district-level variables explain more than 70 percent of the variation in forest disturbance in our econometric model, we find that regional-level effects remain statistically significant. While we cannot identify the exact mechanism through which regional-level effects impact timber harvesting, our results suggest that sub-national differences can have a large and statistically significant impact on land-use outcomes and should be considered in policy design and evaluation.  相似文献   

5.
The Russian boreal forest contains about 25% of the global terrestrial biomass, and even a higher percentage of the carbon stored in litter and soils. Fire burns large areas annually, much of it in low-severity surface fires – but data on fire area and impacts or extent of varying fire severity are poor. Changes in land use, cover, and disturbance patterns such as those predicted by global climate change models, have the potential to greatly alter current fire regimes in boreal forests and to significantly impact global carbon budgets. The extent and global importance of fires in the boreal zone have often been greatly underestimated. For the 1998 fire season we estimate from remote sensing data that about 13.3 million ha burned in Siberia. This is about 5 times higher than estimates from the Russian Aerial Forest Protection Service (Avialesookhrana) for the same period. We estimate that fires in the Russian boreal forest in 1998 constituted some 14–20% of average annual global carbon emissions from forest fires. Average annual emissions from boreal zone forests may be equivalent to 23–39% of regional fossil fuel emissions in Canada and Russia, respectively. But the lack of accurate data and models introduces large potential errors into these estimates. Improved monitoring and understanding of the landscape extent and severity of fires and effects of fire on carbon storage, air chemistry, vegetation dynamics and structure, and forest health and productivity are essential to provide inputs into global and regional models of carbon cycling and atmospheric chemistry.  相似文献   

6.
We developed a volume-to-biomass method based on age groups representative of forest development stages to estimate live tree biomass, C, and biomass and C accumulation rates of Chinas forests between 1973 and 1993. The data were from plot-level forest inventory, national-level inventory statistics, and ecological site studies specified to estimate biomass in different tree components. Our results indicate that carbon storage in Chinas forests was 4.34 Pg C in the early 1990s, an increase of 13% since the early 1970s. The annual forest C sequestration rate from the late 1980s to early 1990s was 0.068 Pg C/yr and approximately four- to five-times higher than in the 1970s and 1980s. The large C sink in Chinas forests in the early 1990s was likely related to age structure changes that had developed to more productive stages, a consequence of reforestation and afforestation programs from the 1960s. The results were compared with other C store estimates, which were based on the same inventory data. Various methods can produce estimates that differ in the direction of C flux as well as its magnitude. Separating age groups with the volume–biomass method could cause a 27% difference in estimated carbon pools but an 89% difference in C sequestration rates whereas the biomass density method would provide an estimate that differs by 65% in the C pools.  相似文献   

7.
We developed a volume-to-biomass method based on age groups representative of forest development stages to estimate live tree biomass, C, and biomass and C accumulation rates of Chinas forests between 1973 and 1993. The data were from plot-level forest inventory, national-level inventory statistics, and ecological site studies specified to estimate biomass in different tree components. Our results indicate that carbon storage in Chinas forests was 4.34 Pg C in the early 1990s, an increase of 13% since the early 1970s. The annual forest C sequestration rate from the late 1980s to early 1990s was 0.068 Pg C/yr and approximately four- to five-times higher than in the 1970s and 1980s. The large C sink in Chinas forests in the early 1990s was likely related to age structure changes that had developed to more productive stages, a consequence of reforestation and afforestation programs from the 1960s. The results were compared with other C store estimates, which were based on the same inventory data. Various methods can produce estimates that differ in the direction of C flux as well as its magnitude. Separating age groups with the volume–biomass method could cause a 27% difference in estimated carbon pools but an 89% difference in C sequestration rates whereas the biomass density method would provide an estimate that differs by 65% in the C pools.  相似文献   

8.
The future forests of eastern North America will be shaped by at least three broad drivers: (i) vegetation change and natural disturbance patterns associated with the protracted recovery following colonial era land use, (ii) a changing climate, and (iii) a land-use regime that consists of geographically variable rates and intensities of forest harvesting, clearing for development, and land protection. We evaluated the aggregate and relative importance of these factors for the future forests of New England, USA by simulating a continuation of the recent trends in these drivers for fifty-years, nominally spanning 2010 to 2060. The models explicitly incorporate the modern distribution of tree species and the geographical variation in climate and land-use change. Using a cellular land-cover change model in combination with a physiologically-based forest landscape model, we conducted a factorial simulation experiment to assess changes in aboveground carbon (AGC) and forest composition. In the control scenario that simulates a hypothetical absence of any future land use or future climate change, the simulated landscape experienced large increases in average AGC—an increase of 53% from 2010 to 2060 (from 4.2 to 6.3 kg m−2). By 2060, climate change increased AGC stores by 8% relative to the control while the land-use regime reduced AGC by 16%. Among land uses, timber harvesting had a larger effect on AGC storage and changes in tree composition than did forest conversion to non-forest uses, with the most pronounced impacts observed on private corporate-owned land in northern New England. Our results demonstrate a large difference between the landscape’s potential to store carbon and the landscape’s current trajectory, assuming a continuation of the modern land-use regime. They also reveal aspects of the land-use regime that will have a disproportionate impact on the ability of the landscape to store carbon in the future, such as harvest regimes on corporate-owned lands. This information will help policy-makers and land managers evaluate trade-offs between commodity production and mitigating climate change through forest carbon storage.  相似文献   

9.
Tropical rainforests, naturally resistant to fire when intact, are increasingly vulnerable to burning due to ongoing forest perturbation and, possibly, climatic changes. Industrial-scale forest degradation and conversion are increasing fire occurrence, and interactions with climate anomalies such as El Niño induced droughts can magnify the extent and severity of fire activity. The influences of these factors on fire frequency in tropical forests has not been widely studied at large spatio-temporal scales at which feedbacks between fire reoccurrence and forest degradation may develop. Linkages between fire activity, industrial land use, and El Niño rainfall deficits are acute in Borneo, where the greatest tropical fire events in recorded history have apparently occurred in recent decades. Here we investigate how fire frequency in Borneo has been influenced by industrial-scale agricultural development and logging during El Niño periods by integrating long-term satellite observations between 1982 and 2010 – a period encompassing the onset, development, and consolidation of its Borneo’s industrial forestry and agricultural operations as well as the full diversity of El Niño events. We record changes in fire frequency over this period by deriving the longest and most comprehensive spatio-temporal record of fire activity across Borneo using AVHRR Global Area Coverage (GAC) satellite data. Monthly fire frequency was derived from these data and modelled at 0.04° resolution via a random-forest model, which explained 56% of the monthly variation as a function of oil palm and timber plantation extent and proximity, logging intensity and proximity, human settlement, climate, forest and peatland condition, and time, observed using Landsat and similar satellite data. Oil-palm extent increased fire frequency until covering 20% of a grid cell, signalling the significant influence of early stages of plantation establishment. Heighted fire frequency was particularly acute within 10 km of oil palm, where both expanding plantation and smallholder agriculture are believed to be contributing factors. Fire frequency increased abruptly and dramatically when rainfall fell below 200 mm month−1, especially as landscape perturbation increased (indicated by vegetation index data). Logging intensity had a negligible influence on fire frequency, including on peatlands, suggesting a more complex response of logged forest to burning than appreciated. Over time, the epicentres of high-frequency fires expanded from East Kalimantan (1980’s) to Central and West Kalimantan (1990’s), coincidentally but apparently slightly preceding oil-palm expansion, and high-frequency fires then waned in East Kalimantan and occurred only in Central and West Kalimantan (2000’s). After accounting for land-cover changes and climate, our model under-estimates observed fire frequency during ca. 1990–2002 and over-estimates it thereafter, suggesting that a multi-decadal shift to industrial forest conversion and forest landscapes may have diminished the propensity for high-frequency fires in much of this globally significant tropical region since ca. 2000.  相似文献   

10.
We estimated the impact of climatic change on wildland fire and suppression effectiveness in northern California by linking general circulation model output to local weather and fire records and projecting fire outcomes with an initial-attack suppression model. The warmer and windier conditions corresponding to a 2 × CO2 climate scenario produced fires that burned more intensely and spread faster in most locations. Despite enhancement of fire suppression efforts, the number of escaped fires (those exceeding initial containment limits) increased 51% in the south San Francisco Bay area, 125% in the Sierra Nevada, and did not change on the north coast. Changes in area burned by contained fires were 41%, 41% and –8%, respectively. When interpolated to most of northern California's wildlands, these results translate to an average annual increase of 114 escapes (a doubling of the current frequency) and an additional 5,000 hectares (a 50% increase) burned by contained fires. On average, the fire return intervals in grass and brush vegetation types were cut in half. The estimates reported represent a minimum expected change, or best-case forecast. In addition to the increased suppression costs and economic damages, changes in fire severity of this magnitude would have widespread impacts on vegetation distribution, forest condition, and carbon storage, and greatly increase the risk to property, natural resources and human life.  相似文献   

11.
A plant and soil simulation model based on satellite observations of vegetation and climate data was used to estimate the potential carbon pools in standing wood biomass across all forest ecosystems of the conterminous United States up to the year 1997. These modeled estimates of vegetative carbon potential were compared to aggregated measurements of standing wood biomass from the U. S. Forest Service’s national Forest Inventory and Analysis (FIA) data set and the Carbon Online Estimator (COLE) to understand: 1) predominant geographic variations in tree growth rate and 2) local land cover and land use history including the time since the last stand-replacing disturbance (e.g., from wildfire or harvest). Results suggest that although wood appears to be accumulating at high rates in many areas of the U.S. (Northwest and Southeast), there are still extensive areas of relatively low biomass forest in the late 1990s according to FIA records. We attribute these low biomass accumulation levels to the high frequency of disturbances, which can be observed even in high production areas such as the Southeast due to frequent forest harvests. Ecosystem models like the one presented in this study have been coupled with satellite observations of land cover and green plant density to uniquely differentiate areas with a high potential for vegetative carbon storage at relatively fine spatial resolution.  相似文献   

12.
A carbon budget model was developed to examine the effects of forest management practices on carbon storage in U.S. private timberlands. The model explicitly incorporates the demand for wood products and its impact on harvesting and other management decisions. Forest carbon is divided into four components: carbon stored in trees, soils, forest litter, and understory vegetation. Changes in the forest carbon inventory result from tree growth and management activities, in particular harvesting. Harvesting of timber for wood products is determined by demand and supply forces. The model then tracks carbon in timber removals through primary and secondary processing and disposal stages. Harvesting also has effects on carbon in soils, forest litter, and understory vegetation. A base-run scenario projects increases in carbon storage in U.S. private timberlands by 2040; however, this increase is offset by carbon emissions resulting from harvesting.  相似文献   

13.
Leakage (spillover) refers to the unintended negative (positive) consequences of forest carbon (C) management in one area on C storage elsewhere. For example, the local C storage benefit of less intensive harvesting in one area may be offset, partly or completely, by intensified harvesting elsewhere in order to meet global timber demand. We present the results of a theoretical study aimed at identifying the key factors determining leakage and spillover, as a prerequisite for more realistic numerical studies. We use a simple model of C storage in managed forest ecosystems and their wood products to derive approximate analytical expressions for the leakage induced by decreasing the harvesting frequency of existing forest, and the spillover induced by establishing new plantations, assuming a fixed total wood production from local and remote (non-local) forests combined. We find that leakage and spillover depend crucially on the growth rates, wood product lifetimes and woody litter decomposition rates of local and remote forests. In particular, our results reveal critical thresholds for leakage and spillover, beyond which effects of forest management on remote C storage exceed local effects. Order of magnitude estimates of leakage indicate its potential importance at global scales.  相似文献   

14.
The paper quantifies the role of Indian forests as source or sink of carbon. The model used in the study takes into account the growing stock, additional tree organs, dead biomass, litter layer and soil organic matter, harvesting and harvesting losses, effects of pests, fire etc., allocation of timber to wood products, life span of products including recycling and allocation to landfills. The net carbon balance calculated as the net source or sink of the forest sector was assessed for the year 1993–94. The study isimportant in view of the obligation placed by the United Nations Framework Convention on Climate Change (UNFCCC) on the signatory nations to provide a periodic update of carbon budget in the atmosphere. For the available data and the underlying assumptions, the results of the carbon budget model indicated that the Indian forest sector acted as a source of 12.8 TgC (including accumulation of carbon in the dead biomass) for the year 1994. The results obtained reinforced the notion that an integrated approach is required in order to evaluate the forest sector's influence on the global atmospheric carbon levels. The model used in this study has the advantage that all the factors determining the carbon budget can be integrated and altered to determine their influence. The study also throws light on the issues that stand in the way of preparing through carbon budget for developing countries like India.  相似文献   

15.
We studied forest land-use and carbon storage over a 40-year period in the Middle Zavolgie region of Russia, an area of approximately 287,000 km2. Data were obtained from state forest inventories for 1958 and 1995. In spite of the effects of disturbances and uncontrolled harvesting between 1958 and 1990, the forests of the Middle Zavolgie Region remained a considerable pool of ecosystem carbon (C). Over the study period the total area of forest lands decreased by approximately 2%, while the growing stock increased by 8%. There were significant changes in the age class structure of these forest ecosystems toward a larger proportion of young and middle aged stands. The total amount of carbon in the stem biomass of forests in all regions of Middle Zavolgie increased over the 40-year period and was equal to about 307 TgC in 1995. A regional approach for estimating the C dynamics of forest ecosystems in response to land use in the Middle Zavolgie region can contribute to understanding the potential role of Russian forests in C sequestration. This information is important for implementation of international conventions concerning national carbon budgets and reducing the potential negative impacts of climate change.  相似文献   

16.
Development trends of Russian forests and their impact on the global carbon budget were assessed at the national level on the basis of long-term forest inventory data (1961–1998). Over this period, vegetation of Russian forest lands are estimated as a carbon sink, with an annual average level of carbon sequestration in vegetational organic matter of 210 ± 30 Tg C · yr–1 (soil carbon is not considered in this study), of which 153 Tg C · yr–1 were accumulated in live biomass and 57 Tg C · yr–1 in dead wood. The temporal variability of the sink is very large; for the five-year averages used in the analysis, the C sequestration varies from about 60 to above 300 Tg C· yr–1. It is shown that long-term forest inventory data could serve as an important information base for assessing crucial indicators of full carbon accounting of forests.  相似文献   

17.
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2–5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from −0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.  相似文献   

18.
Previous research has identified the importance of the role of land cover in the global carbon cycle. In particular, forests have been identified as a significant carbon sink that can mitigate the rate of global climate change. Policy makers are faced with complex and difficult challenges in getting timely and useful information in monitoring global forest resources. Recent advances in the tools and methods of forest carbon accounting have produced new, innovative approaches to forest-based carbon inventories. But it is important as new tools are developed that scientists understand the needs of policy makers and that policy makers understand the capabilities and limitations of forest inventory methods. This paper explores four different policy applications that rely, or could benefit from, national carbon inventories. The goal is to help build a bridge between the communities of climate policy makers and scientists specialized in forest carbon inventories. To this end, we pursue three specific objectives: First we provide an overview for policy makers about approaches to forest carbon inventories, paying particular attention to the contributions of remote sensing technologies. Second, we outline the issues particularly relevant to forest inventory scientists who are interested in responding to public policy needs. We then discuss the tradeoffs between information cost, accuracy, precision, transparency and timeliness that need to be balanced in long-term monitoring of forest carbon. Finally, the article concludes with a series of observations and recommendations for the implementation of forest carbon inventories as increasingly central components of global climate change policy.  相似文献   

19.
Forests have an important role to play in climate change mitigation through carbon sequestration and wood supply. However, the lower albedo of mature forests compared to bare land implies that focusing only on GHG accounting may lead to biased estimates of forestry's total climatic impacts. An economic model with a high degree of detail of the Norwegian forestry and forest industries is used to simulate GHG fluxes and albedo impacts for the next decades. Albedo is incorporated in a carbon tax/subsidy scheme in the Norwegian forest sector using a partial, spatial equilibrium model. While a price of EU€100/tCO2e that targets GHG fluxes only results in reduced harvests, the same price including albedo leads to harvest levels that are five times higher in the first five years, with 39% of the national productive forest land base being cleared. The results suggest that policies that only consider GHG fluxes and ignore changes in albedo will not lead to an optimal use of the forest sector for climate change mitigation.

Policy relevance

Bare land reflects a larger share of incoming solar energy than dense forest and thus has higher albedo. Earlier research has suggested that changes in albedo caused by management of boreal forest may be as important as carbon fluxes for the forest's overall global warming impacts. The presented analysis is the first attempt to link albedo to national-scale forest climate policies. A policy with subsidies to forest owners that generate carbon sequestration and taxes levied on carbon emissions leads to a reduced forest harvest. However, including albedo in the policy alongside carbon fluxes yields very different results, causing initial harvest levels to increase substantially. The inclusion of albedo impacts will make harvests more beneficial for climate change mitigation as compared to a carbon-only policy. Hence, it is likely that carbon policies that ignore albedo will not lead to optimal forest management for climate change mitigation.  相似文献   

20.
Increased Carbon Sink in Temperate and Boreal Forests   总被引:6,自引:0,他引:6  
An intense search is under way to identify the `missing sink' in the world carbon budget of perhaps 2 Pg year–1 (petagrams, or billiontonnes) of carbon, but its location and mechanism have proved elusive. Here we use a new forest inventory data set to estimate the carbon sink and the carbon pool of woody biomass in 55 countries that account for nearly all temperate or boreal forests and approximately half the world's total forest area. In each country there was a net accumulation of biomass; together, the carbon sink of woody biomass was 0.88 Pg year–1 during the 1990swith estimated uncertainty from 0.71 to 1.1 Pg year–1. Thisestimate, already about half of the missing sink, would probably be even larger if carbon accumulation in soil and detritus were also accounted for, but we are unable to quantify that additional sink. The sink is twice that estimated for the woody biomass of these forests a decade ago due to higher estimates for tree growth throughout the region and decreased timber harvests in Russia. In contrast, the new data indicate a carbon pool that is smaller than earlier estimates because of improved data for Russia and Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号