首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Rayleigh wave phase and group velocities in the period range of 24–39 sec, obtained from two earthquakes which occurred in northeastern brazil and which were recorded by the Brazilian seismological station RDJ (Rio de Janeiro), have been used to study crustal and upper mantle structures of the Brazilian coastal region. Three crustal and upper mantle models have been tried out to explain crustal and upper mantle structures of the region. The upper crust has not been resolved, due basically to the narrow period range of the phase and group velocities data. The phase velocity inversions have exhibited good resolutions for both lower crust and upper mantle, with shear wave velocities characteristic of these regions. The group velocity data inversions for these models have showed good results only for the lower crust. The shear wave velocities of the lower crust (3.86 and 3.89 km/sec), obtained with phase velocity inversions, are similar to that (=3.89 km/sec) found byHwang (1985) to the eastern South American region, while group velocity inversions have presented shear velocity (=3.75 km/sec) similar to that (=3.78 km/sec) found byLazcano (1972) to the Brazilian shield. It was not possible to define sharply the crust-mantle transition, but an analysis of the phase and group velocity inversions results has indicated that the total thickness of the crust should be between 30 and 39 km. The crustal and upper mantle model, obtained with phase velocity inversion, can be used as a preliminary model for the Brazilian coast.  相似文献   

2.
The 2-D crustal velocity model along the Hirapur-Mandla DSS profile across the Narmada-Son lineament in central India (Murty et al., 1998) has been updated based on the analysis of some short and discontinuous seismic wide-angle reflection phases. Three layers, with seismic velocities of 6.5–6.7, 6.35–6.40 and 6.8 km s–1, and upper boundaries located approximately at 8, 17 and 22 km depth respectively, have been identified between the basement (velocity 5.9 km s–1) and the uppermost mantle (velocity 7.8 km s–1). The layer with 6.5–6.7 km s–1 velocity is thin and is less than 2-km deep between the Narmada north (at Katangi) and south (at Jabalpur) faults. The upper crust shows a horst feature between these faults, which indicates that the Narmada zone acts as a ridge between two pockets of mafic intrusion in the upper crust. The Moho boundary, at 40–44 km depth and the intra-crustal layers exhibit an upwarp suggesting that the Narmada faults have deep origins, involving deep-seated tectonics. A smaller intrusive thickness between the Narmada faults, as compared to those beyond these faults, suggests that the intrusive activities on the two sides are independent. This further suggests that the two Narmada faults may have been active at different geological times. The seismic model is constrained by 2-D gravity modeling. The gravity highs on either side of the Narmada zone are due to the effect of the high velocity/high density mafic intrusion at upper crustal level.  相似文献   

3.
Phase velocities of Rayleigh waves for the Adriatic Sea area are obtained in the period range 25–190 sec along the path (l'Aquila-Trieste) AQU-TRI and 20–167 sec along the path (Trieste-Bari) TRI-BAI.The phase velocities are systematically higher than the known values for the surrounding regions. The data inversion indicates the presence of a lithosphere typical of stable continental areas with clear high-velocity lid (V s 4.6 km/sec) overlying a well developed low velocity zone (V s 4.2 km/sec).P. F. Geodinamica C.N.R., Roma Pubbl. N. 189.  相似文献   

4.
Two new techniques in surface wave analysis, the modified moving window method and the method of stacking and cleaning, are used to determine average group and phase velocities over the area covering the Adriatic Sea and the Northern and Central Apennines, while avoiding the anomalous region under the Po plain.The data indicate that the lateral homogeneity of the region is sufficiently good to allow for an averaged model of the lithosphere. Backus-Gilbert inversion of the data leads to an averaged model with a thick sedimentary cover (10–11 km), a normal continental Moho depth of about 35 km, and a velocity rise with depth below the crust.The extremely low group velocity data that are encountered both in the Apennine region and in the Adriatic Sea suggest a similarity between the crustal structure of this area and the Eastern Mediterranean....the olive-sandalled Apennine In the South dimly islanded. (Shelley)  相似文献   

5.
— Starting with fundamental-mode Rayleigh-wave attenuation coefficient values (R) predicted by previously determined frequency-independent models of shear-wave Q (Q), we have obtained frequency-dependent Q models that explain measured values of R as well as of Lg coda Q and its frequency dependence at 1 Hz (Qo and , respectively) for China and some adjacent regions. The process combines trial-and-error selection of a model for the depth distribution of the frequency dependence parameter () for Q with a formal inversion for the depth distribution of Q at 1 Hz. Fifteen of the derived models have depth distributions of that are constant, or nearly constant, between the surface and a depth of 30 km. distributions that vary with depth in the upper 30 km are necessary to explain the remaining seven models. values for the depth-independent models vary between 0.4 and 0.7 everywhere except in the western portion of the Tibetan Plateau where they range between about 0.1 and 0.3 for three paths. These low values lie in a region where QLg and crustal Q are very low and suggest that they should also be low for high-frequency propagation. The models in which varies with depth all show a decrease in that value ranging between 0.55 and 0.8 in the upper 15 km of the crust and (with two exceptions where =0.0) between 0.3 and 0.55 in the depth range 15–30 km. The distribution of values between 0.6 and 0.8 (the higher part of the range) in the upper crust indicates that high-frequency waves will propagate most efficiently, relative to low-frequency waves, in a band that includes, and strikes north-northeastward from the path between event 212/97 and KMI to the path between event 180/95 and station HIA in the north.Acknowledgement. We thank Lianli Cong for providing his code for plotting crustal Q models and Robert Herrmann for writing the mode summation code for computing Lg synthetics used in this study. Our work benefited from helpful discussions with Jack Xie at Lamont-Doherty Earth Observatory of Columbia University. This research was sponsored by the Defense Threat Reduction Agency Contract No. DTRA-01-00-C-0213.  相似文献   

6.
Summary Distribution of compressional-wave velocities in the mantle is determined fromdT/d measurements using the Uppsala seismograph array station (UPSAS). Short-period vertical-component seismograms from 181 events in the epicentral distance range 16°–100° have been used. The velocity distribution shows anomalous variations at depths of 750, 1500, 1800, 2300 and 2550 km. Evidence of lateral heterogeneity beneath the northern part of the Asian continent, in the depth range 1700–2300 km, is discussed. Computed travel times, based on this velocity-depth relation, are tested by an examination of travel-time residuals from the Long Shot and Milrow explosions on Amchitka, Aleutian Islands.  相似文献   

7.
Group velocities of Rayleigh and Love waves along the paths across the Black Sea and partly Asia Minor and the Balkan Peninsula are used to estimate lateral variations of the crustal structure in the region. As a first step, lateral variations of group velocities for periods in the range 10–20 s are determined using a 2D tomography method. Since the paths are oriented predominantly in NE–SW or N–S direction, the resolution is estimated as a function of azimuth. The local dispersion curves are actually averaged over the extended areas stretched in the predominant direction of the paths. The size of the averaging area in the direction of the best resolution is approximately 200 km. As a second step, the local averaged dispersion curves are inverted to vertical sections of S-wave velocities. Since the dispersion curves in the 10–20 s period range are mostly affected by the upper crustal structure, the velocities are estimated to a depth of approximately 25 km. Velocity sections along 43° N latitude are determined separately from Rayleigh and Love wave data. It is shown that the crust under the sea contains a low-velocity sedimentary layer of 2–3 km thickness, localized in the eastern and western deeps, as found earlier from DSS data. Beneath the sedimentary layer, two layers are present with velocity values lying between those of granite and consolidated sediments. Velocities in these layers are slightly lower in the deeps, and the boundaries of the layers are lowered. S-wave velocities obtained from Love wave data are found to be larger than those from Rayleigh wave data, the difference being most pronounced in the basaltic layer. If this difference is attributed to anisotropy, the anisotropy coefficient = (SH - SV)/Smean is reasonable (2–3%) in the upper layers, and exceeds 9% in the basaltic layer.  相似文献   

8.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

9.
A target of our study was the Bohemian Massif in Central Europe that was emplaced during the Variscan orogeny. We used teleseismic records from ten broadband stations lying within and around the massif. Different techniques of receiver function interpretation were applied, including 1-D inversion of R- and Q-components, forward modelling of V s velocity, and simultaneous determination of Moho depth and Poissons ratio in the crust. These results provide new, independent information about the distribution of S wave velocity down to about 60 km depth. In the area of Bohemian Massif, the crustal thickness varies from 29 km in the NW to 40 km in the SE. A relatively simple velocity structure with gradually increasing velocities in the crust and uppermost mantle is observed in the eastern part of the Bohemian Massif. The western part of the massif is characterized by more complicated structure with low S wave velocities in the upper crust, as well as in the uppermost mantle. This could be related to tectono-magmatic activity in the Eger rift that started in the uppermost Cretaceous and was active in the West Bohemia-Vogland area till the late Cenozoic.  相似文献   

10.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

11.
Pyroclastic flow emplacement is strongly influenced by eruption column height. A surface along which kinetic energy is zero theoretically connects the loci of eruption column collapse with all coeval ignimbrite termini. This surface is reconstructed as a two-dimensional energy line for the 1912 Katmai pyroclastic flow in the Valley of Ten Thousand Smokes from mapped flow termini and the runup of the ignimbrite onto obstructions and through passes. Extrapolation of the energy line to the vicinity of the source vent at Novarupta suggests the eruption column which generated the ignimbrite eruption was approximately 425 m high. The 1912 pyroclastic flow travelled about 25 km downvalley. Empirical velocity data calculated from runup elevations and surveyed centrifugal superelevations indicate initial velocities near Novarupta were greater than 79–88 m s–1. The flow progressively decelerated and was travelling only 2–8 m s–1 when it crossed a moraine 16 km downvalley. The constant slope of the energy line away from Novarupta suggests the flow was systematically slowed by internal and basal friction. Using a simple physical model to calculate flow velocities and a constant kinetic friction coefficient (Heim coefficient) of 0.04 derived from the reconstructed energy line, the flow is estimated to have decelerated at an average rate of –0.16 m s–2 and to have taken approximately 9.5 minutes to travel 25 km down the Valley of Ten Thousand Smokes. The shear strength of the flowing ignimbrite at the moraine was approximately 0.5 kPa, and its Bingham viscosity when it crossed the moraine was 3.5 × 103 P. If the flow was Newtonian, its viscosity was 4.2 × 103 P. Reynolds and Froude numbers at the moraine were only 41–62 and 0.84–1.04, respectively, indicating laminar, subcritical flow.  相似文献   

12.
The EISCAT UHF radar system was used to study the characteristics of E-region coherent backscatter at very large magnetic aspect angles (5–11°). Data taken using 60 s pulses during elevation scans through horizontally uniform backscatter permitted the use of inversion techniques to determine height profiles of the scattering layer. The layer was always singly peaked, with a mean height of 104 km, and mean thickness (full width at half maximum) of 10 km, both independent of aspect angle. Aspect sensitivities were also estimated, with the Sodankylä-Tromsø link observing 5 dB/degree at aspect angles near 5°, decreasing to 3 dB/degree at 10° aspect angle. Observed coherent phase velocities from all three stations were found to be roughly consistent with LOS measurements of a common E-region phase velocity vector. The E-region phase velocity had the same orientation as the F-region ion drift velocity, but was approximately 50% smaller in magnitude. Spectra were narrow with skewness of about –1 (for negative velocities), increasing slightly with aspect angle.  相似文献   

13.
14.
Seismologically determined properties of the 400 km discontinuity may be compared to experimentally determined properties of the associated phase transformation in order to place constraints upon upper mantle bulk composition. Disagreement among previous studies is commonly ascribed to differences in elastic equations of state (especially to assumptions about pressure and temperature derivatives) between studies. However, much of the disparity between studies is actually due to the selection of different seismic data functionals (P-wave velocity,S-wave velocity, etc.) for comparison to minnral clasticity calculations, rather than to the differences in elasticity data sets and equations of state. Within any given study, bulk sound velocity comparisons generally yield more olivine-rich compositional estimates than doP-wave velocity comparisons, which in turn indicate more olivine thanS-wave velocities. Indeed, such variation in compositional estimates within a given study (arising from choice of data functional) exceeds the variation between studies (arising from elastic equation of state approx mations). it can be argued that bulk sound velocities are better constrained seismologically than densities and, being independent of assumptions about shear moduli, should provide more reliable compositional estimates thanP-orS-wave velocities.Using recently measured bulk and shear moduli equations of state, mutually consistent estimates of upper mantle olivine content can be obtained fromP-wave,S-wave, and bulk sound velocity contrasts at 400 km only if ln /T of has a value of about–2×10–4K–1, yielding approximately 52% olivine by volume. A value of ln /T smaller in magnitude would require reassessment of several underlying assumptions.  相似文献   

15.
The upper crustal (20 km)P-wave velocity beneath the Shillong Plateau and Nowgong area has been studied by the time-distance plot method. TheP-arrival data of the shallow (20 km) microearthquakes from three temporary networks are used, and the average velocity is found to be 5.55 km/s. The velocity ratio (V p /V s ) for the upper crust (0–20 km) as well as for the lower crust (21–40 km) are determined by the Wadati-plot method and station-by-station method. The average value obtained by the two methods is compatible; theV p /V s ranges between 1.74 to 1.76. A generalized seismic velocity model of the area is suggested by this study, which has been very useful for microearthquake location.  相似文献   

16.
Calibration of the Tibetan Plateau Using Regional Seismic Waveforms   总被引:3,自引:0,他引:3  
We use the recordings from 51 earthquakes produced by a PASSCAL deployment in Tibet to develop a two-layer crustal model for the region. Starting with their ISC locations, we iteratively fit the P-arrival times to relocate the earthquakes and estimate mantle and crustal seismic parameters. An average crustal P velocity of 6.2–6.3 km/s is obtained for a crustal thickness of 65 km while the P velocity of the uppermost mantle is 8.1 km/s. The upper layer of the model is further fine-tuned by obtaining the best synthetic SH waveform match to an observed waveform for a well-located event. Green's functions from this model are then used to estimate the source parameters for those events using a grid search procedure. Average event relocation relative to the ISC locations, excluding two poorly located earthquakes, is 16 km. All but one earthquake are determined by the waveform inversion to be at depths between 5 and 15 km. This is 15 km shallower, on average, than depths reported by the ISC. The shallow seismicity cut-off depth and low crustal velocities suggest high temperatures in the lower crust. Thrust faulting source mechanisms dominate at the margins of the plateau. Within the plateau, at locations with surface elevations less than 5 km, source mechanisms are a mixture of strike-slip and thrust. Most events occurring in the high plateau where elevations are above 5 km show normal faulting. This indicates that a large portion of the plateau is under EW extension.  相似文献   

17.
Linear stacking procedures are used to retrieve the attenuation of 91 modes belonging to the 3rd, 4th and 5th Rayleigh overtones branches in the 80–160 s period range, and contributing to the so-called PhaseX wave group. Our data show in general slightly less attenuation than expected from available models. Data space inversion shows that, when combined with previously measured fundamental modeQ's, this new dataset improves resolution significantly in the 1000–2000 km depth range. Based on this remark, we carry out a number of parameter space inversions. Our results suggest a narrow (80–200 km) zone of high attenuation (Q =75–90), low attenuation in the intermediate mantle (670–1500 km); (Q 350), and lower values in the deeper mantle (Q 200).  相似文献   

18.
Summary A velocity model for theP-wave is obtained for the entire mantle, by inversion ofdT/d-data from travel times of 473 earthquakes and explosions registered at 13 seismological observatories in Sweden and Finland. As a check, the travel times resulting from this model are found to be in good agreement with our observed travel times. The observations are distributed over the entire azimuth range with respect to the recording stations. The effect of the core upon the observeddT/d-values is significant from about 95° distance outwards. The estimate of the core radius from this model is 3480 km which corresponds to about 97° of epicentral distance. The resulting model has sudden changes inP-velocity gradient at about 65, 115, 400, 780, 970, 1100, 1350, 2320, 2600 and 2710 km depth, which correspond roughly to 10°, 14°, 19.5°, 29°, 40°, 46°, 54°, 80°, 86° and 90° epicentral distance, respectively.On leave from Geophysical Institute, Tehran University, Tehran, Iran  相似文献   

19.
The tectonics of North Iceland is dominated by interaction of the Iceland hot spot and the mid-oceanic Kolbeinsey Ridge. Transform movement along the transition zone, often called Tjörnes Fracture Zone, and the seismicity it generates has been documented in the past. This study uses the seismicity data of the permanent South Iceland Lowland (SIL) network to quantify velocity structure from travel time inversion. The SIL seismic dataset is capable of illuminating parts of the region in a 3D seismic velocity inversion, primarily between 7 and 12 km depth, with less resolution elsewhere because of the sparse setup of the monitoring network. The problem has been analysed in 1, 2 and 3 dimensions and evaluated with 4 different inversion tools. The study reports a correlation of a seismic velocity anomaly in compressional wave velocity v p and shear wave velocity v s with the Husavik-Flatey fault and a further subsurface lineament stretching between the islands of Flatey and Grimsey. Finally, our results support a decrease of crustal thickness between the mainland and the island of Grimsey.  相似文献   

20.
Summary Recently determined gravity anomalies along the NW-SE oriented Swiss Geotraverse from Basel to Bellinzona are used in combination with seismic refraction data to deduce a crustal section across the Swiss Alps. Topographic, Bouguer, free air, isostatic and geological corrections were applied to the data. Geological features considered in the corrections are the Swiss Molasse basin filled with sediments and the Ivrea body of high-density material. The resultant Bouguer anomaly over the Gotthard massif is 130 mgal lower than the Bouguer anomaly at the northern end of the profile near Basel. The Alpine region is associated with negative isostatic anomalies down to –20 mgal. The crustal thickness is found to increase gradually from the northern end of the profile (thicknessH=30 km) towards the Helvetic nappes at the northern margin of the Alps (H=38 km) and more rapidly towards the Gotthard massif (H=50 km) and further south to Biasca down to a depth of 58 km. From Biasca southward the crustal thickness thins quite rapidly to reach a depth of 30 km at the southern end of the profile near Bellinzona. Thus the Alps have a distinct asymmetric crustal root whose maximum thickness is almost twice the average crustal thickness in Central Europe. With the Mohorovii-discontinuity deduced from seismic observations an average constant density contrast of –0.33 gcm–3 is found between the lower crust and upper mantle underneath the Alps.Institut für Geophysik, ETH Zürich, Contribution No. 130.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号