首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
We present the results of a statistical study of the star formation rates (SFR) derived from the Galaxy Evolution Explorer (GALEX) observations in the ultraviolet continuum and in the Hα emission line for a sample of about 800 luminous compact galaxies (LCGs). Galaxies in this sample have a compact structure and include one or several regions of active star formation. Global galaxy characteristics (metallicity, luminosity, stellar mass) are intermediate between ones of the nearby blue compact dwarf (BCD) galaxies and Lyman-break galaxies (LBGs) at high redshifts z>2–3. SFRs were corrected for interstellar extinction which was derived from the optical Sloan Digital Sky Survey (SDSS) spectra. We find that SFRs derived from the galaxy luminosities in the far ultraviolet (FUV) and near ultraviolet (NUV) ranges vary in a wide range from 0.18 M ?yr?1 to 113 M ?yr?1 with median values of 3.8 M ?yr?1 and 5.2 M ?yr?1, respectively. Simple regression relations are found for luminosities L(Hα) and L(UV) as functions of the mass of the young stellar population, the starburst age, and the galaxy metallicity. We consider the evolution of L(Hα), L(FUV) and L(NUV) with a starburst age and introduce new characteristics of star formation, namely the initial Hα, FUV and NUV luminosities at zero starburst age.  相似文献   

2.
For a sample of 8156 emission-line galaxies from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4), we have determined the current star formation rates (SFR) from three parameters: the Hα luminosity of H II regions corrected for the aperture and interstellar extinction (N = 7006 galaxies), the far-infrared luminosity (IRAS data, N = 350), and the monochromatic luminosity in the radio continuum at ν = 1.4 GHz (NVSS data, N = 475). A Salpeter initial mass function with the range of stellar masses 0.1–100 M was assumed in the SFR FIR calculations. In calculating SFR1.4, we assumed that the fraction of the thermal emission in the total radio continuum emission of the galaxy at 1.4 GHz was 10%. An upper limit for the starburst age has been determined for galaxies with known abundances of heavy elements. We compare our results with those of similar studies for isolated and Markarian H II galaxies.  相似文献   

3.
We present new spectral synthesis models for solar metallicity stellar populations, based on a library of stellar spectra that extends across near-IR wavelengths out to 2.4 µm at a resolution approaching 1000. We show that the spectra of massive star clusters in the starburst galaxy M 82 can be reproduced very well with these models. We compare near-IR spectroscopic ages with optical ages, and discuss the main sources of (systematic) errors that still affect those ages.  相似文献   

4.
In the context of the unified model of Seyfert galaxies, we use observations from the literature and a radiative transfer model to investigate the near-IR to mm emission produced by the presumed torus in the Circinus galaxy, from 2 μm to 1.3 mm. From the infrared SED modelling, we find that the total luminosity ( L IR) in this wavelength range consists of similar contributions from the torus and starburst with a ratio of nuclear luminosity to starburst luminosity ( L NUC/ L SB)∼0.8 .
By using a similar torus model to that of NGC 1068, but without the conical dust , we find an upper limit to the outer torus radius of ∼12 pc with a best fit of ∼2 pc. The upper limit torus size estimated from the radiative transfer modelling is consistent with the 16-pc torus radius estimated from near-IR imaging polarimetry of Circinus.  相似文献   

5.
Preliminary results from a detailed spectrophotometric analysis of the blue compact dwarf galaxy (BCD) Mrk 35 are presented. We have performed deep UBVRI broad-band and Hα narrow-band optical observations, near-infrared (JHK s) imaging and long-slit spectroscopy of the galaxy. Mrk 35 is composed of a very young starburst population distributed in a bar-like structure, placed on top of an underlying, older stellar host galaxy. Using predictions of evolutionary synthesis models, we estimate the ages of both the starburst regions and the underlying stellar component. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5″–7″ from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5′×5′) field of view of the scanning Fabry-Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and [N II]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II]λ6583/Hα ratio for both galaxies. Based on all these data, we studied the gas kinematics in the galaxies, constructed their rotation curves, and estimated their masses (2 × 1011M for NGC 6286 and 1.2 × 1010M for NGC 6285). We found no evidence of gas rotation around the major axis of NGC 6286, which argues against the assumption that this galaxy has a forming polar ring. The IFP observations revealed an emission nebula around this galaxy with a structure characteristic of superwind galaxies. The large [N II]λ6583/Hα ratio, which suggests the collisional excitation of its emission, and the high infrared luminosity are additional arguments for the hypothesis of a superwind in the galaxy NGC 6286. A close encounter between the two galaxies was probably responsible for the starburst and the bipolar outflow of hot gas from the central region of the disk.  相似文献   

7.
A composite sample of NIR-selected galaxies having extended multicolor coverage has been used to probe the cosmological evolution of the blue luminosity function and of the stellar mass function. The bright fraction of the sample has spectroscopic redshifts, and the remaining fraction well-calibrated photometric redshifts. The resulting blue luminosity function shows an increasing brightening with redshift respect to the local luminosity function. Hierarchical CDM models predictions are in agreement only at low and intermediate redshifts but fail to reproduce the observed brightening at high redshifts (z ∼ 2–3). This brightening marks the epoch where starburst activity triggered by galaxy interactions could be an important physical mechanism for the galaxy evolution. At the same time the NIR galaxy sample has been used to trace the evolution of the cosmological stellar mass density up to ∼3. A clear decrease of the average mass density is apparent with a fraction ∼15% of the local value at z ∼ 3. UV bright star-forming galaxies are substancial contributors to the evolution of the stellar mass density. Although these results are globally consistent with Λ–CDM scenarios, they tend to underestimate the mass density produced by more massive galaxies present at z > 2.  相似文献   

8.
《New Astronomy》2002,7(7):395-433
The stellar initial mass function at high redshift is an important defining property of the first stellar systems to form and may also play a role in various dark matter problems. We here determine the faint stellar luminosity function in an apparently dark-matter-dominated external galaxy in which the stars formed at high redshift. The Ursa Minor dwarf spheroidal galaxy is a system with a particularly simple stellar population—all of the stars being old and metal-poor—similar to that of a classical halo globular cluster. A direct comparison of the faint luminosity functions of the UMi dSph and of similar metallicity, old globular clusters is equivalent to a comparison of the initial mass functions and is presented here, based on deep HST WFPC2 and STIS imaging data. We find that these luminosity functions are indistinguishable, down to a luminosity corresponding to ∼0.3 M. Our results show that the low-mass stellar IMF for stars that formed at very high redshift is apparently invariant across environments as diverse as those of an extremely low-surface-brightness, dark-matter-dominated dwarf galaxy and a dark-matter-free, high-density globular cluster within the Milky Way.  相似文献   

9.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

10.
An extensive set of molecular hydrogen observations of centers of southern infrared galaxies is presented. Our data are combined with published infrared and radio observations to investigate the relationship between nuclear and circumnuclear activity. We convert the observational data to absolute luminosities, by applying the known distances. The resulting dataset covers several decades in luminosity for the various parameters, which observe fairly tight correlations. The parameters of our (power law) fits are, at the level of accuracy achieved, not dependent on the type of nuclear activity: while the dataset comprises a mixture of alleged Seyfert, Liner & starburst galaxies, single fits match the complete sample well enough. In particular, non-thermal nuclei (AGN) present in some of the galaxies in the current sample, do not stand out in the parameters we investigated. The absence of a significant dependence on the nuclear type is consistent with the idea that the ever present starbursts energetically dominate a possible ‘AGN in a dusty environment’-component in most galaxy nuclei with infrared excesses.The size of the H2 emitting region is found to be proportional to the square root of the 21 cm radio continuum luminosity. The excitation of the circumnuclear H2 is dominated by shocks. If the H2 extent marks the size of an inner cavity in the dense molecular material surrounding a galaxy nucleus and the radio luminosity is proportional to the mechanical luminosity of (circum)nuclear winds. This result then indicates that the cavity size occurs at constant pressure in the sample galaxies, in accordance with the superwind model by Heckman et al. (1990) [ApJS, 74, 833]. Our results, together with those obtained by others, thus suggest that luminosities and size scales of excited gas associated with active nuclei are dominated by the mechanical energy input. Given the difficulties of uniquely establishing the presence of an AGN, we cannot exclude that (a large fraction of the) infrared luminous galaxies procure part of their radiated energy through accretion onto a massive dark object.F. Duccio Macchetto  相似文献   

11.
The irregular galaxy M82 is known as the archetypal starburst galaxy. Its proximity (3.5 Mpc) makes this galaxy an ideal laboratory for studying the properties of its starburst. The detailed morphology of the [FeII] 1.644 μm and emission Paα (at 1.87 μm) is revealed by the NICMOS images. The peak of the 2.2 μm continuum brightness(evolved population) lies very close to the dynamical centre. Most of the Paα emission (which traces the young population) is distributed in a ring of star formation (with a `hole' lacking line emission at the centre of the galaxy). These observations support the scenario in which the starburst in M82 is propagating outwards. It has long been suggested that the [FeII] emission in starburst galaxies can be used as a measure of supernova (SN) activity. M82 shows a large number of radio supernova remnants (SNRs), approximately 50, lying in the plane of the galaxy. The comparison of the positions of the bright compact [FeII] emitting regions with the location of the radio SNRs shows that there is no one-to-one spatial correspondence between the two emissions, suggesting that the radio and [FeII] emissions trace two populations of SNRs with different ages. Young (a few hundred years) SNRs are best traced by their radio emission, whereas the [FeII] stage lasts for at least a few 104 yr. The compact [FeII] sources contribute only some 20 % of the total [FeII] emission observed in M82. However, much of the remaining unresolved [FeII] emission in the plane of the galaxy may arise from SNRs that expanded and merged into a general interstellar medium within a few 104 yr. Presumably, as much as 70% of the total extinction-corrected [FeII]1.644 μm in M82 is associated with SNRs. The extended and diffuse [FeII] component in M82 seems to be related with the superwind above and below the disc of the galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Absorption by gas and dust in circumstellar Hii regions within primeval galaxies could seriously depress the far-ultraviolet continuum radiation emitted by primeval galaxies. This effect might account for the failure of Partridge (1974) and Davis and Wilkinson (1974) to detect the redshifted radiation from primeval galaxies at optical and near-infrared wavelengths. A primeval galaxy becomes very bright only during the final stages of contraction. Provided that dust can form by the time the primeval galaxy reaches peak luminosity, a significant fraction of the stellar far-ultraviolet radiation is converted into far-infrared. Thus an appropriate spectral region to search for the redshifted integrated background from primeval galaxies lies between 350 , where the 2.7 K microwave background radiation becomes important, and 150 , where other extragalactic discrete sources, such as nearby galactic nuclei, may contribute. The expected IR flux is calculated with Kaufman's (1975) model for the star formation rate in the contracting galaxy. Letz p be the redshift andT g the grain temperature when the primeval galaxy becomes very bright. Unlessz p10 orT g is fairly high, the intensity of the far-infrared radiation from primeval galaxies would be dominated by the high frequency tail of the 2.7 K microwave background. On the other hand, if dust is unimportant, we determine the spectral energy distribution of a primeval galaxy emitted in the range 912 Å to 2050 Å; we find that the luminosities are not very sensitive to the dependence of effective temperatures on metal abundance.  相似文献   

13.
We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ∼11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ∼2.7 × 105 M, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event.Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s−1 and 9.34 × 1039 erg s−1, and are in excess of the Eddington-limit of 1.5 M accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.  相似文献   

14.
We present a multiwavelength study of the formation of massive stellar clusters, their emergence from cocoons of gas and dust, and their feedback on surrounding matter. Using data that span from radio to optical wavelengths, including Spitzer and Hubble Space Telescope ACS observations, we examine the population of young star clusters in the central starburst region of the irregular Wolf–Rayet galaxy IC4662. We model the radio-to-infrared (IR) spectral energy distributions of embedded clusters to determine the properties of their Hii regions and dust cocoons (sizes, masses, densities, temperatures), and use near-IR and optical data with mid-IR spectroscopy to constrain the properties of the embedded clusters themselves (mass, age, extinction, excitation, abundance). The two massive star-formation regions in IC4662 are excited by stellar populations with ages of ~4 Myr and masses of ~3×105 M (assuming a Kroupa initial mass function). They have high excitation and subsolar abundances, and they may actually be comprised of several massive clusters rather than the single monolithic massive compact objects known as ‘super star clusters’ (SSCs). Mid-IR spectra reveal that these clusters have very high extinction values, A V ~20–25 mag, and that the dust in IC4662 is well mixed with the emitting gas, not in a foreground screen.  相似文献   

15.
The spectral energy distribution of the Seyfert type-2 galaxy Mk 348 is analyzed based on IUE observations and published data. It is found that most of the optical and near-IR flux comes from the underlying galaxy bulge population. The rest of the emission can be fitted by a power law of the formF v v with =0.6. In order to explain the X-ray emission this power law requires either a change of slope or a cutoff before 2 keV. The possibility that the emission originates in a young star cluster is discussed and a simple population synthesis model for the continuum of the galaxy is presented.  相似文献   

16.
Understanding the formation and evolution of massive galaxies provides important keys to constrain the baryon assembly processes in the ΛCDM hierarchical scenario. We review the main results obtained so far with the K20 and other recent near-IR surveys on the redshift distribution, the evolution of the luminosity function and luminosity density, the nature of old and dusty EROs, the evolution of the galaxy stellar mass function and the nature of luminous starbursts at z∼2 which may be the progenitors of the present-day massive spheroidal galaxies.  相似文献   

17.
We present spectrophotometric results of the Seyfert 2 galaxy NGC 2273. The presence of high-order Balmer absorption lines (H8, H9, H10) and weak equivalent widths of Call K A3933, CN A4200, G-band A4300 and MgIb 5173 clearly indicate recent star-forming activity in the nuclear region. Using a simple stellar population synthesis model, we find that for the best fit, the contributions of a power-law featureless continuum, an intermediate-age (~ 108 yr) and an old (> 109yr) stellar population to the total light at the reference normalization wavelength are 10.0%, 33.4% and 56.6%, respectively. The existence of recent starburst activity is also consistent with its high far-infrared luminosity (log LFIR/L = 9.9), its infrared color indexes [a(25,60) = -1.81 and a(60,100) = -0.79, typical values for Seyfert galaxies with circumnuclear starburst], and its q-value (2.23, ratio of infrared to radio flux, very similar to that of normal spirals and starburst galaxies). Byrd et al. have suggested that NGC 2273 mig  相似文献   

18.
Images of neutral hydrogen 21 cm absorption and radio continuum emission at 1.4 GHz from Mrk 273 were made using the Very Long Baseline Array and Very Large Array. These images reveal a gas disk associated with the northern nuclear region with a diameter 0&farcs;5 (370 pc) at an inclination angle of 53 degrees. The radio continuum emission is composed of a diffuse component plus a number of compact sources. This morphology resembles those of nearby, lower luminosity starburst galaxies. These images provide strong support for the hypothesis that the luminosity of the northern source is dominated by an extreme compact starburst. The H i 21 cm absorption shows an east-west gradient in velocity of 450 km s-1 across 0&farcs;3 (220 pc), which implies an enclosed mass of 2x109 M middle dot in circle, comparable to the molecular gas mass. The brightest of the compact sources may indicate radio emission from an active nucleus, but this source contributes only 3.8% to the total flux density of the northern nuclear regions. The H i 21 cm absorption toward the southeast radio nucleus suggests infall at 200 km s-1 on scales 相似文献   

19.
We present a study of the origin of infrared (IR) emission in the optically normal, infrared luminous galaxy NGC 4418. By decomposing the stellar absorption features and continua in the range of 3600-8000 A from the Sloan Digital Sky Survey into a set of simple stellar populations, we derive the stellar properties for the nuclear region of NGC 4418. We compare the observed infrared luminosity with the one derived from the starburst model, and find that star-forming activity contributes only 7% to the total IR emission, that as the IR emission region is spatially very compact, the most possible source for the greater part of the IR emission is a deeply embedded AGN, though an AGN component is found to be unnecessary for fitting the optical spectrum.  相似文献   

20.
We present high spatial resolution X-ray Chandra HRC and HST WFPC2 H α observations of the prototypical infrared-luminous galaxy NGC 6240. The central region of this system shows a remarkably complex morphology, with filaments and loops observed in the optical and X-rays. The total X-ray luminosity is dominated by the extended emission. Both nuclei are clearly detected in the HRC image and both appear to be extended. The energetics of the nuclei imply that the southern nucleus is the more plausible counterpart to the obscured active galactic nucleus. The overall spectral energy distribution of the galaxy is in good agreement with a blend of starburst and AGN components that have similar bolometric luminosities,   L bol∼5×1045 erg s-1  , with the starburst dominating the observed continuum in the near-infrared ( K band), optical and soft X-ray bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号