首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Zinc remediation of aqueous streams is of special concern due to its highly toxic and persistent nature. Conventional treatment technologies for the removal of zinc are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal of metal ions from aqueous solutions. Mechanisms involved in the biosorption process include chemisorption, complexation, adsorption–complexation on surface and pores, ion exchange, microprecipitation, heavy metal hydroxide condensation onto the bio surface, and surface adsorption. Biosorption largely depends on parameters such as pH, the initial metal ion concentration, biomass concentration, presence of various competitive metal ions in solution, and to a limited extent on temperature. Biosorption using biomass such as agricultural wastes, industrial residues, municipal solid waste, biosolids, food processing waste, aquatic plants, animal wastes, etc., is regarded as a cost‐effective technique for the treatment of high volume and low concentration complex wastewaters containing zinc metal. Very few reviews are available where readers can get an overview of the sorption capacities of agro based biomasses used for zinc remediation together with the traditional remediation methods. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agro based biomasses for zinc metal ions removal. An extensive table summarizes the sorption capacities of various adsorbents. These biosorbents can be modified using various methods for better efficiency and multiple reuses to enhance their applicability at industrial scale. We have incorporated most of the valuable available literature on zinc removal from waste water using agro based biomasses in this review.  相似文献   

3.
A recursion formulation for the transport of linearly sorbing solutes undergoing non-equilibrium sorption is developed. Constant or spatially varying sorption kinetics can be modeled using the recursion approach. The sorption and desorption rates are modeled as two independent random processes with a prescribed mean and covariance structure with spatial variability in the rate parameters included as well. The recursion solution, in terms of the probability density function for solute travel times, is derived by specifying transition probabilities for moving between the aqueous and sorbed phases. A few simple examples are used to illustrate the approach. The computer implementation leads to a very rapid algorithm that is easily extended to cover cases beyond the basic model presented here.  相似文献   

4.
《Advances in water resources》2004,27(11):1045-1059
Transient and steady-state analytical solutions are derived to investigate solute transport in a fractured porous medium consisting of evenly spaced, parallel discrete fractures. The solutions incorporate a finite width strip source, longitudinal and transverse dispersion in the fractures, source decay, aqueous phase decay, one-dimensional diffusion into the matrix, sorption to fracture walls, and sorption within the matrix. The solutions are derived using Laplace and Fourier transforms, and inverted by interchanging the order of integration and utilizing a numerical Laplace inversion algorithm. The solutions are verified for simplified cases by comparison to solutions derived by Batu [Batu V. A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type condition at the source. Wat Resour Res 1989;25(6):1125] and Sudicky and Frind [Sudicky EA, Frind EO. Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Wat Resour Res 1982;18(6):1634]. The application of the solutions to a fractured sandstone demonstrates that narrower source widths and larger values of transverse dispersivity both lead to lower downstream concentrations in the fractures and shorter steady-state plumes. The incorporation of aqueous phase decay and source concentration decay both lead to lower concentrations and shorter plumes, with even moderate amounts of decay significantly shortening the persistence of contamination.  相似文献   

5.
Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of “dual mode” sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including “dual mode” and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.  相似文献   

6.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

7.
8.
Arsenic is a well‐known groundwater contaminant that causes toxicological and carcinogenic effects in humans. Predicting the transport of arsenic in the subsurface is often problematic because of its complex sorption characteristics. Numerous researchers have reported that arsenic sorption on soil material is initially fast and then subsequently slow. A dual‐site numerical sorption model was previously developed to describe arsenic desorption from arsenic‐contaminated soils in batch experiments in terms of two different release mechanisms. Experiments involving synthetic acid rain leaching of four arsenic‐contaminated soil columns were performed to verify the dual‐site numerical sorption model in the context of one‐dimensional vertical transport. The fitted models successfully simulated the signature long tailings and the two‐stage arsenic leaching patterns for all four soil columns. The dual‐site sorption model was incorporated within the general solute transport simulation code Modular Three‐Dimensional Multispecies (MT3DMS), version 5.10. The resulting version was named MT3DDS and is available for public access. This experimental study has shown that MT3DDS is capable of simulating phase redistribution during transport, and thus provides a new numerical tool for simulating arsenic transport in the subsurface.  相似文献   

9.
The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm.  相似文献   

10.
We consider an Eulerian–Lagrangian localized adjoint method (ELLAM) applied to nonlinear model equations governing solute transport and sorption in porous media. Solute transport in the aqueous phase is modeled by standard advection and hydrodynamic dispersion processes, while sorption is modeled with a nonlinear local-equilibrium model. We present our implementation of finite volume ELLAM (FV-ELLAM) and finite element (FE-ELLAM) discretizations to the reactive transport model and evaluate their performance for several test problems containing self-sharpening fronts.  相似文献   

11.
The individual outputs of several elements in solution, suspended solids and bedload were estimated for a stream draining a small upland catchment in mid-Wales. The data indicate the overall importance of transport in solution, although the solid phase can make a significant contribution to the export of potassium, iron and silicon from the site.  相似文献   

12.
Modeling Organic Contaminant Partitioning in Ground-Water Systems   总被引:1,自引:0,他引:1  
  相似文献   

13.
Zhang J  Clare J  Guo J 《Ground water》2012,50(4):633-638
In the evaluation of potential risk from ingestion of groundwater near an impacted site, numerical simulation of fate and transport processes of chemicals of concern is often required. If there is potential concern about multiple chemicals, numerical simulation of each chemical separately is often needed. In this paper, a semi-analytical solution is presented based on a numerical solution of the transport of a conservative and nonreactive tracer. When multiple chemicals undergoing sorption and first-order degradation need to be modeled, we can avoid performing individual numerical simulations for each chemical by applying the semi-analytical solution. Numerical test runs were conducted to verify the semi-analytical solution; simulation results reveal that the concentrations derived from the semi-analytical solution are identical to those derived from the individual numerical fate and transport model simulations. The semi-analytical solution requires steady-state flow conditions, no continuing contaminant source, and similar initial source concentration distributions.  相似文献   

14.
Transport and Biological Fate of Toluene in Low-Permeability Soils   总被引:1,自引:0,他引:1  
The effect of simultaneous sorption, diffusion, and biodegradation on the fate and transport of toluene in low-permeability soil formations was examined. A transport model accounting for vapor and liquid sorption, vapor diffusions, and first-order biodegradation was developed to describe the movement of volatile solute in unsaturated soils. Modeling studies were followed with laboratory batch and column studies on fine-grained soil samples obtained from a gasoline-contaminated site. Batch experiments yielded the sorption and diffusion coefficients for generating theoretical solute transport profiles. Column studies were conducted to examine toluene sorption, diffusion, and biodegradation under aerobic and denitrifying conditions. Results from the column studies indicated that vapor sorption onto the soil was minimal due to the high moisture content of the soil. Comparison of model predictions with experimental results indicated that the SASK model, which is based on the resistivity theory, provided a more accurate prediction of the vapor phase tortuosity than the frequently used Millington-Quirk equation. Laboratory results of toluene concentration profiles matched well with the model predictions and yielded degradation rates comparable to those obtained in the field. Column studies, examining toluene biodegradation under aerobic and denitrifying conditions in low-permeability soils, indicated that the presence of excess nitrate in aerobic environments yielded higher solute degradation rates than those observed under exclusively aerobic systems.  相似文献   

15.
16.
In Switzerland, deep geological storage in clay rich host rocks is the preferred option for low- and intermediate-level radioactive waste. For these waste types cementitious materials are used for tunnel support and backfill, waste containers and waste matrixes. The different geochemical characteristics of clay and cementitious materials may induce mineralogical and pore water changes which might affect the barrier functionality of host rocks and concretes.We present numerical reactive transport calculations that systematically compare the geochemical evolution at cement/clay interfaces for the proposed host rocks in Switzerland for different transport scenarios. We developed a consistent set of thermodynamic data, simultaneously valid for cementitious (concrete) and clay materials. With our setup we successfully reproduced mineralogies, water contents and pore water compositions of the proposed host rocks and of a reference concrete.Our calculations show that the effects of geochemical gradients between concrete and clay materials are very similar for all investigated host rocks. The mineralogical changes at material interfaces are restricted to narrow zones for all host rocks. The extent of strong pH increase in the host rocks is limited, although a slight increase of pH over greater distances seems possible in advective transport scenarios. Our diffusive and partially also the advective calculations show massive porosity changes due to precipitation/dissolution of mineral phases near the interface, in line with many other reported transport calculations on cement/clay interactions. For all investigated transport scenarios the degradation of concrete materials in emplacement caverns due to diffusive and advective transport of clay pore water into the caverns is limited to narrow zones.A specific effort has been made to improve the geochemical setup and the extensive use of solid solution phases demonstrated the successful application of a thermodynamically consistent union of very different materials like hydrated cement and clay phases. A reactive system utilizing a novel solid-solution approach is used, where cation exchange is an intrinsic property of the mineral phase definition. Although such features were not the primary aim of the study, they offer a large potential for studies where ion exchange and changing sorption properties are of interest.  相似文献   

17.
Knowing the transport of uranium and radionu-clides through the environment is important for as-sessing the risk posed by long-term disposal of rad-waste. Granitic rocks have been selected as a host-rock type for the first high-level radwaste repository in China. According to the Chinese High-level Rad-waste Management Program, high-level radwaste (HLW) will be buried at 800―1000 m depth in a granitic pluton in Northwest China and, specifically, in the A granitic complex of Beishan area,…  相似文献   

18.
The objective of this research was to study the sorption and transport of bacteriophage MS-2 (a bacterial virus) in saturated sediments under the effect of salinity and soluble organic matter (SOM). One-dimensional column experiments were conducted on washed high-purity silica sand and sandy soil. In sand column tests, increasing salinity showed distinct effect on enhancing MS-2 sorption. However, SOM decreased MS-2 sorption. Using a two-site reversible-irreversible sorption model and the double layer theory, we explained that pore-water salinity potentially compressed the theoretical thickness of double layers of MS-2 and sand, and thus increased sorption on reversible sorption sites. On irreversible sorption sites, increasing salinity reversed charges of some sand particles from negative to positive, and thus converted reversible sorption sites into irreversible sites and enhanced sorption of MS-2. SOM was able to expand the double layer thickness on reversible sites and competed with MS-2 for the same binding place on irreversible sites. In sandy soil column tests, the bonded and dissolved (natural) soil organic matters suppressed the effects of pore-water salinity and added SOM and significantly reduced MS-2 adsorption. This was explained that the bonded soil organic matter occupied a great portion of sorption sites and significantly reduced sorption sites for MS-2. In addition, the dissolved soil organic matter potentially expanded the double layer thickness of MS-2 and sandy soil on reversible sorption sites and competed with MS-2 for the same binding place.  相似文献   

19.
Assessment of the likely outcome of engineered invention strategies in acid mine drainage often involves complex geochemical modelling activities. Geochemical modelling is based on chemical thermodynamic data. In addition sorption models, kinetical reaction rates and transport tools are included into the modelling codes because the interactions between solution components and surfaces, reaction time and transport are considered important features characterising the site‐specific situation. In the determination of both thermodynamic data and sorption coefficients, speciation calculations play an important role. By applying the probabilistic speciation code Ljungskile to some simplified acid mine drainage scenarios, the strong impact of chemical speciation on the complete measurement uncertainty budget of geochemical modelling predictions is shown. The complete measurement uncertainty budget in combination with other metrological concepts like traceability is an essential element of quality assurance for experimental data. The elements of quality assurance are provided by international agreements and normative documents on national and international levels. The following discussion will focus on some metrological issues of sorption data.  相似文献   

20.
Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号