首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Recently acquired COCORP profiles in the southeastern United States show that: 1) Reflections associated with the Appalachian detachment are prominent beneath the Inner Piedmont of western Georgia, but do not extend further southeast beneath the Pine Mountain belt. 2) The Brunswick magnetic low is associated with a broad zone of crustal-penetrating dipping reflections that probably marks the Alleghanian suture in the southeastern U.S. 3) The South Georgia basin is a composite feature consisting of several half-graben, locally containing >5 km of Triassic - E. Jurassic basin fill. These basins occur within the interior of the Alleghanian orogen, but are not specifically associated with Alleghanian suture. 4) Across-strike crustal thickness variation, and distribution and character of lower-crust and Moho reflections in the Southern Appalachians is grossly similar to that observed in other parts of the Appalachian/Hercynian orogenic belt. Global comparisons suggest that these regional variations are a consequence of post-collisional extensional tectonics, rather than a primary (Palaeozoic or older) feature of the orogenic belt.  相似文献   

2.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   

3.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

4.
We present mineralogic, isotopic and thermochronologic analyses on psammopelitic and tuffaceous levels from the Bermejo and Vinchina basins – both foreland depocentres of the Central Andes of Argentina – that define a low‐temperature regime for the crust akin to a slab shallowing and flattening process. The contents of illite in illite/smectite interstratified (I/S) show a progressive illitization into the deeper parts of both basins. The distribution of I/S is compatible with theoretical simulations and predicted heat flow values of ca. 26 mW m?2 in the 8–3.4 Ma interval for the Vinchina Basin and ca. 42 mW m?2 since 9 Ma for the Bermejo Basin. The latter shows heat flow values that are comparable to those reported by magnetotelluric analysis (36–40 mW m?2) in agreement with previously published heat flow calculations along the modern Andean foreland. The Rb–Sr isochrones in psammopelites (<2 μm fractions) show ages between 125 and 165 Ma, whereas the K–Ar ages decrease as the grain size is smaller (136–224 Ma for 1–2 μm, 112–159 Ma for 0.2–1 μm, 76–116 Ma for <0.2 μ and 39.3–42 Ma for <0.1 μm). These ages are significantly older than the sedimentation in the basins (ca. 16 Ma for the Vinchina Basin; U–Pb age), and can be explained by the presence of a significant amount of detrital components, mainly illite, even in the finer fractions. The preservation of detrital ages is consistent with the shallow diagenesis related to a low‐temperature regime, proposed here for the basins. Younger K–Ar ages (21.3–12 Ma) were obtained for a basal tuffaceous level. Clay mineralogy and R0 ordering in the deepest part of the Vinchina Basin, together with the evolution model of I/S with depth, suggest that the burial temperatures would have not exceeded ca. 100°C in agreement with (U–Th)/He analyses performed on apatite extracted from two tuffaceous units. Thermal indicators from both studied basins confirm the existence of a low‐temperature regime during flat subduction.  相似文献   

5.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

6.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   

7.
40Ar–39Ar dating of detrital white micas, petrography and heavy mineral analysis and whole‐rock geochemistry has been applied to three time‐equivalent sections through the Siwalik Group molasse in SW Nepal [Tinau Khola section (12–6 Ma), Surai Khola section (12–1 Ma) and Karnali section (16–5 Ma)]. 40Ar–39Ar ages from 1415 single detrital white micas show a peak of ages between 20 and 15 Ma for all the three sections, corresponding to the period of most extensive exhumation of the Greater Himalaya. Lag times of less than 5 Myr persist until 10 Ma, indicating Greater Himalayan exhumation rates of up to 2.6 mm year?1, using one‐dimensional thermal modelling. There are few micas younger than 12 Ma, no lag times of less than 6 Myr after 10 Ma and whole‐rock geochemistry and petrography show a significant provenance change at 12 Ma indicating erosion from the Lesser Himalaya at this time. These changes suggest a switch in the dynamics of the orogen that took place during the 12–10 Ma period whereby most strain began to be accommodated by structures within the Lesser Himalaya as opposed to the Greater Himalaya. Consistent data from all three Siwalik sections suggest a lateral continuity in tectonic evolution for the central Himalayas.  相似文献   

8.
The Paleoproterozoic (Statherian) Thelon Basin is located in the Churchill Province of the Canadian Shield, formed following the Trans‐Hudson Orogeny. Basin formation followed an interval of felsic volcanism and weathering of underlying bedrock. The diagenetic evolution of the Thelon lasted about one billion years and was punctuated by fluid movement influenced by tectonic events. Early quartz cements formed in well‐sorted, quartz‐rich facies during diagenetic stage 1; fluids in which these overgrowths formed had δ18O values near 0‰ (Vienna Standard Mean Ocean Water). Uranium‐rich apatite cement (P1) also formed during diagenetic stage 1 indicating that oxygenated, uranium‐bearing pore water was present in the basin early in its diagenetic history. Syntaxial quartz cement (Q1) formed in water with δ18O from ?4 to ?0.8‰ in diagenetic stage 2. Diagenetic stage 3 occurred when the Thelon Formation was at ca. 5 km depth, and was marked by extensive illitization, alteration of detrital grains, and uranium mineralization. Basin‐wide, illite crystallized at ~200 °C by fluids with δ18O values of 5–9‰ and δD values of ?60 to ?31‰, consistent with evolved basinal brines. Tectonism caused by the accretion of Nena at ca. 1600 Ma may have provided the mechanism for brine movement during deep burial. Diagenetic stage 4 is associated with fracturing and emplacement of mafic dikes at ca. 1300 Ma, quartz cement (Q3) in fractures and vugs, further illitization, and recrystallization of uraninite (U2). Q3 cements have fluid inclusions that suggest variable salinities, δ18O values of 1.5–9‰, and δD values of ?97 to ?83‰ for stage 4 brines. K‐feldspar and Mg‐chlorite formed during diagenetic stage 5 at ca. 1000 Ma in upper stratigraphic sequences, and in the west. These phases precipitated from low‐temperature, isotopically distinct fluids. Their distribution indicates that the basin hydrostratigraphy remained partitioned for >600 Ma.  相似文献   

9.
ABSTRACT Tectonic subsidence in the 20–9 Ma Bermejo basin resulted from spatially variable crustal loading on a lithosphere of spatially variable strength (e.g. elastic thickness). Reconstruction of the crustal loads added between 20 and 9 Ma, and assessment of the effects of these loads on an elastic, isotropic lithosphere confirm this hypothesis. Elastic models effectively explain tectonic subsidence east of the Iglesia–Calingasta basin, but west of it crustal loads were locally compensated. Elastic models also prove that the 20–9 Ma Frontal Cordillera loading is of no importance in the mechanical system of the Bermejo basin. 2D and 3D elastic models of a uniformly strong lithosphere under 20–9 Ma crustal loads corrected for post‐9 Ma erosion successfully replicate the 9 Ma Bermejo basin's proximal palaeotopography. However, they fail to replicate the 9 Ma basin's medial and distal palaeotopography. A 3D finite element model of a lithosphere with bimodal strength (weak below the Bermejo basin and west of the Precordillera, and strong below the Precordillera and east of the Valle Fértil lineament) successfully replicates the 9 Ma basin's palaeotopography. That variable strength model introduces a southward decrease in the wavelength of flexural deformation, which results in a basin that narrows southward, consistent with the 9 Ma Bermejo basin. The preferred 9 Ma lithospheric strength distribution is similar to the present lithospheric strength field derived from gravity data, suggesting that the bimodal strength signature was retained throughout the entire basin's evolution. Late Miocene flattening of the subducting slab, tectonic change to a broken foreland, or deposition of a thick (~8–10 km) sedimentary cover did not affect the strength of the lithosphere underlying the Bermejo basin. The long‐term bimodal strength field does not correlate with the documented thickness of the seismogenic crust.  相似文献   

10.
b
The Kulgera Dyke Swarm consists of olivine tholeiites which have intruded late Proterozoic transitional-granulite gneisses and granites of the eastern Musgrave Block, in central Australia. Preliminary Rb/Sr results suggest that the dolerites were emplaced at 1054 ± 14 Ma. In addition, a Rb/Sr age of 1060 ± 10 Ma on a biotite from a pegmatite indicates thermal resetting of the country rock minerals during dyke emplacement. Palaeomagnetic investigations of the dykes yield a primary thermoremanent magnetization direction corresponding to a palaeomagnetic pole at 17S, 266E ( A 95= 12). In addition to this primary magnetization, an overprint component was present in many of the samples, providing a palaeomagnetic pole at 30S, 138E ( A 95= 24), which is similar to previous results from other central Australian rocks affected by the Alice Springs Orogeny. The results extend the area of influence of the Carboniferous Alice Springs Orogeny southward into the Musgrave Block. Further, the results provide no evidence for an earlier, Late Proterozoic, Petermann Orogeny affecting the Musgrave Block in the Kulgera region. However, the possibility that a Petermann Orogeny thermal overprint has been erased by the Alice Springs Orogeny cannot be dismissed.  相似文献   

11.
1IntroductionAspartofextensivelateProterozoicmobilebeltofEastAntarctica,theupperamphibolitetogranulitefacieshigh-grademetamor...  相似文献   

12.
The Cenozoic sedimentary succession of Bangladesh provides an archive of Himalayan erosion. However, its potential as an archive is currently hampered by a poor lithostratigaphic framework with limited age control. We focus on the Hatia Trough of the Bengal Basin and the adjacent fold belt of the Chittagong Hill Tracts which forms the outermost part of the west‐propagating Indo‐Burmese wedge. We present a basin‐wide seismic stratigraphic framework for the Neogene rocks, calibrated by biostratigraphy, which divides the succession into three seismically distinct and regionally correlatable Megasequences (MS). MS1 extends to NN15‐NN16 (ca. 2.5–3.9 Ma), MS2 to NN19‐NN20 (ca. 0.4–1.9 Ma) and MS3 to present day. Our seismic mapping, thermochronological analyses of detrital mineral grains, isotopic analyses of bulk rock, heavy mineral and petrographic data, show that the Neogene rocks of the Hatia Trough and Chittagong Hill Tracts are predominantly Himalayan‐derived, with a subordinate arc‐derived input possibly from the Paleogene IndoBurman Ranges as well as the Trans‐Himalaya. Our seismic data allow us to concur with previous work that suggests folding of the outer part of the west‐propagating wedge only commenced recently, within the last few million years. We suggest that it could have been the westward encroachment and final abutment of the Chittagong Hill Tracts fold belt onto the already‐uplifted Shillong Plateau that caused diversion of the palaeo‐Brahmaputra to the west of the plateau as the north‐east drainage route closed.  相似文献   

13.
《Basin Research》2018,30(3):426-447
Integration of detrital zircon geochronology and three‐dimensional (3D) seismic‐reflection data from the Molasse basin of Austria yields new insight into Oligocene‐early Miocene palaeogeography and patterns of sediment routing within the Alpine foreland of central Europe. Three‐dimensional seismic‐reflection data show a network of deep‐water tributaries and a long‐lived (>8 Ma) foredeep‐axial channel belt that transported Alpine detritus greater than 100 km from west to east. We present 793 new detrital zircon ages from 10 sandstone samples collected from subsurface cores located within the seismically mapped network of deep‐water tributaries and the axial channel belt. Grain age populations correspond with major pre‐Alpine orogenic cycles: the Cadomian (750–530 Ma), the Caledonian (490–380 Ma) and the Variscan (350–250 Ma). Additional age populations correspond with Eocene‐Oligocene Periadriatic magmatism (40–30 Ma) and pre‐Alpine, Precambrian sources (>750 Ma). Although many samples share the same age populations, the abundances of these populations vary significantly. Sediment that entered the deep‐water axial channel belt from the west (Freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable age distributions that include populations of Variscan, Caledonian and Cadomian zircon at modest abundances (15–32% each). Sandstone from a shallow marine unit proximal to the northern basin margin consists of >75% Variscan (350–300 Ma) zircon, which originated from the adjacent Bohemian Massif. Mixing calculations based on the Kolmogorov–Smirnoff statistic suggest that the Alpine fold‐thrust belt south of the foreland was also an important source of detritus to the deep‐water Molasse basin. We interpret evolving detrital zircon age distributions within the axial foredeep to reflect a progressive increase in longitudinal sediment input from the west (Freshwater Molasse) and/or southwest (Inntal fault zone) relative to transverse sediment input from the fold‐thrust belt to the south. We infer that these changes reflect a major reorganization of catchment boundaries and denudation rates in the Alpine Orogen that resulted in the Alpine foreland evolving to dominantly longitudinal sediment dispersal. This change was most notably marked by the development of a submarine canyon during deposition of the Upper Puchkirchen Formation that promoted sediment bypass eastward from Freshwater Molasse depozones to the Molasse basin deep‐water axial channel belt. The integration of 3D seismic‐reflection data with detrital zircon geochronology illustrates sediment dispersal patterns within a continental‐scale orogen, with implications for the relative role of longitudinal vs. transverse sediment delivery in peripheral foreland basins.  相似文献   

14.
The Central Maine Basin is the largest expanse of deep‐marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep‐water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard‐derived units shows maxima at 988 and 429 Ma; a composite from the outboard‐derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard‐derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard‐derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard‐derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow‐marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland‐basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard‐derived strata of the Central Maine Basin, which were shed from post‐Taconic highlands located to the northwest. Next, southeasterly parts of this succession were deformed in the Acadian orogeny, shedding detritus towards the northwest into what remained of the basin. Finally, by Pragian time, all strata in the Central Maine Basin had been deformed and detritus from this new source accumulated as the Tarratine Formation in a new incarnation of the foreland basin. Silurian‐Devonian strata from the Central Maine Basin have similar detrital zircon age distributions to coeval rocks from the Arctic Alaska and Farewell terranes of Alaska and the Northwestern terrane of Svalbard. We suggest that these strata were derived from different segments of the 6500‐km‐long Appalachian‐Caledonide orogen.  相似文献   

15.
New ̄(40)Ar/ ̄(39)ArageevidencefortheCetaceousvolcanicrocksoftheMountBowlesFormationinLivingstTX@郑祥身@胡世玲@刘嘉麒New40Ar/39Arageevidence...  相似文献   

16.
Late- to post-orogenic basins formed on both sides of the Pan-African – Brasiliano orogen when the Congo and Kalahari Cratons collided with the Rio de la Plata Craton during the formation of western Gondwana. Trace fossil evidence and radiometric age dating indicate that deposits on both sides are coeval and span the Cambrian–Precambrian boundary. A peripheral foreland basin, the Nama Basin, developed on the subducting southern African plate. Lower, craton-derived fluviomarine clastics are overlain by marine platform carbonates and deltaic flysch derived in part from the rising subduction complex along the northern (Damara Belt) and western (Gariep Belt) orogenic margins. Rare, thin volcanic ash layers (tuffs and cherts) are present. Upper sediments consist of unconformable red molasse related to collisional orogenesis. Orogenic loading from the north and west led to crustal flexure and the formation of a remnant ocean that drained to the south and closed progressively from north to south. During final collision SE-, E- and NE-verging nappes overrode the active basin margins. Although younger than most of the post-orogenic magmatism, its setting on the cratonic edge of the subducting plate precluded marked volcanism or granitic intrusion, the only exception being the youngest intrusions of the Kuboos-Bremen Suite dated at 521±6 Ma to 491±8 Ma. Two foreland-type basins, perhaps faulted remnants of a much larger NE–SW elongated retroarc foreland basin, are found west of the Dom Feliciano Belt on the edge of the Rio de la Plata Craton in southern Brazil. In the southern Camaqua Basin, basal fluvial deposits are followed by cyclical marine and coarsening-up deltaic deposits with a notable volcanic and volcaniclastic component. This lower deformed succession, comprising mainly red beds, contain stratabound Cu and Pb–Zn deposits and is overlain unconformably by a fluviodeltaic to aeolian succession of sandstones and conglomerates (with minor andesitic volcanics), derived primarily from an eastern orogenic source and showing southerly longitudinal transport. In the northern Itajaí Basin, sediments range from basal fluvial and platform sediments to fining-up submarine fan and turbidite deposits with intercalated acid tuffs. The Brazilian basins had faulted margins off which alluvial fans were shed. They also overlie parts of the Ribeira Belt. Thrust deformation along the orogenic margin bordering the Dom Feliciano Belt was directed westward in the Camaqua and Itajaí basins, but reactivated strike-slip and normal faults are also present. Late- to post-orogenic granitoids and volcanics of the Dom Feliciano Belt, ranging in age from 568±6 Ma to 529±4 Ma, occur in the foreland basins and are geochemically related to some of the synsedimentary volcanics.  相似文献   

17.
The Santa Rosa basin of northeastern Baja California is one of several transtensional basins that formed during Neogene oblique opening of the Gulf of California. The basin comprises Late Miocene to Pleistocene sedimentary and volcanic strata that define an asymmetric half‐graben above the Santa Rosa detachment, a low‐angle normal fault with ca. 4–5 km of SE‐directed displacement. Stratigraphic analysis reveals systematic basin‐scale facies variations both parallel and across the basin. The basin‐fill exhibits an overall fining‐upward cycle, from conglomerate and breccia at the base to alternating sandstone‐mudstone in the depocentre, which interfingers with the fault‐scarp facies of the detachment. Sediment dispersal was transverse‐dominated and occurred through coalescing alluvial fans from the immediate hanging wall and/or footwall of the detachment. Different stratigraphic sections reveal important lateral facies variations that correlate with major corrugations of the detachment fault. The latter represent extension‐parallel folds that formed largely in response to the ca. N‐S constrictional strain regime of the transtensional plate boundary. The upward vertical deflection associated with antiformal folding dampened subsidence in the northeastern Santa Rosa basin, and resulted in steep topographic gradients with a high influx of coarse conglomerate here. By contrast, the downward motion in the synform hinge resulted in increased subsidence, and led to a southwestward migration of the depocentre with time. Thus, the Santa Rosa basin represents a new type of transtensional rift basin in which oblique extension is partitioned between diffuse constriction and discrete normal faulting. 40Ar/39Ar geochronology of intercalated volcanic rocks suggests that transtensional deformation began during the Late Miocene, between 9.36 ± 0.14 Ma and 6.78 ± 0.12 Ma, and confirms previous results from low‐temperature thermochronology (Seiler et al., 2011). Two other volcanic units that appear to be part of a conformable syn‐rift sequence are, in fact, duplicates of pre‐rift volcanics and represent allochthonous, gravity‐driven slide blocks that originated from the hanging wall.  相似文献   

18.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

19.
Abstract Burial histories of Late Neogene sedimentary basins on the Wairarapa fold and thrust belt of the Hikurangi convergent plate margin (New Zealand) have been deduced from decompacted sedimentary columns and palaeo-waterdepths. These indicate that at least two major cycles of basement subsidence and uplift have occurred since 15 Ma. The older (15-10 Ma) cycle affected outer areas of the forearc. Subsidence, at a minimum rate of 0.5-0.6 mm/yr, was followed by rapid uplift. The subsequent (10 Ma to present) cycle affected a broad area of the inner forearc. Subsidence, at an average rate 0.33 mm/yr, was followed by uplift at an average rate of 0.5-1.5 mm/yr. Vertical movement is continuing, with uplift of the axial greywacke ranges and development of the Wairarapa Depression.
Palinspastic reconstructions of the inner forearc region indicate that basin development was characterized by a see-saw oscillation in basin orientation, with the axis of the basin and direction of basin tilt switching back and forth from east to west through time. A large-scale change in basin orientation took place around 2 Ma when the westernmost part of Wairarapa began to rise on the flanks of the rising Tararua Range, associated with the ramping of the Australian Plate up and over the subducted Pacific Plate. Loading of the forearc is unlikely to have been a significant cause of basement subsidence before this event. Earlier phases of basin development associated with basement subsidence and uplift may be related to a complex interplay of tectonic factors, including the westward migration of the subducted Pacific Plate as it passed beneath southern North Island during Miocene time, episodes of locking and unlocking of parts of the plate interface, and growth of the accretionary prism.  相似文献   

20.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号