首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inclination of M31 is too close to edge-on for a bar component to be easily recognized and is not sufficiently edge-on for a boxy/peanut bulge to protrude clearly out of the equatorial plane. Nevertheless, a sufficient number of clues allow us to argue that this galaxy is barred. We use fully self-consistent N -body simulations of barred galaxies and compare them with both photometric and kinematic observational data for M31. In particular, we rely on the near-infrared photometry presented in a companion paper. We compare isodensity contours to isophotal contours and the light profile along cuts parallel to the galaxy major axis and offset towards the north, or the south, to mass profiles along similar cuts on the model. All these comparisons, as well as position–velocity diagrams for the gaseous component, give us strong arguments that M31 is barred. We compare four fiducial N -body models to the data and thus set constraints on the parameters of the M31 bar, as its strength, length and orientation. Our 'best' models, although not meant to be exact models of M31, reproduce in a very satisfactory way the main relevant observations. We present arguments that M31 has both a classical and a boxy/peanut bulge. Its pseudo-ring-like structure at roughly 50 arcmin is near the outer Lindblad resonance of the bar and could thus be an outer ring, as often observed in barred galaxies. The shape of the isophotes also argues that the vertically thin part of the M31 bar extends considerably further out than its boxy bulge, that is, that the boxy bulge is only part of the bar, thus confirming predictions from orbital structure studies and from previous N -body simulations. It seems very likely that the backbone of M31's boxy bulge is families of periodic orbits, members of the x1-tree and bifurcating from the x1 family at its higher order vertical resonances, such as the x1v3 or x1v4 families.  相似文献   

2.
Objects designated as bulges in disc galaxies do not form a homogeneous class. I distinguish three types: the classical bulges, the properties of which are similar to those of ellipticals and which form by collapse or merging; boxy and peanut bulges, which are seen in near-edge-on galaxies and which are in fact just a part of the bar seen edge-on; and, finally, disc-like bulges, which result from the inflow of (mainly) gas to the centre-most parts, and subsequent star formation. I make a detailed comparison of the properties of boxy and peanut bulges with those of N -body bars seen edge-on, and answer previously voiced objections about the links between the two. I also present and analyse simulations where a boxy/peanut feature is present at the same time as a classical spheroidal bulge, and compare them with observations. Finally, I propose a nomenclature that can help to distinguish between the three types of bulges and avoid considerable confusion.  相似文献   

3.
Angular momentum redistribution within barred galaxies drives their dynamical evolution. Angular momentum is emitted mainly by near-resonant material in the bar region and absorbed by resonant material mainly in the outer disc and in the halo. This exchange determines the strength of the bar, the decrease of its pattern speed, as well as its morphology. If the galaxy has also a gaseous component and/or a companion or satellite, then these also take part in the angular momentum exchange. During the evolution a bar structure forms in the inner parts of the halo as well. This bar is shorter and fatter than the disc bar and stays so all through the simulation, although its length grows considerably with time. Viewed edge-on, the bar in the disc component acquires a boxy or peanut shape. I describe the families of periodic orbits that explain such structures and review the observations showing that boxy/peanut ‘bulges’ are in fact just bars seen edge-on.  相似文献   

4.
The vertical profiles of disc galaxies are built by the material trapped around stable periodic orbits, which form their 'skeletons'. Therefore, knowledge of the stability of the main families of periodic orbits in appropriate 3D models enables one to predict possible morphologies for edge-on disc galaxies. In a pilot survey we compare the orbital structures that lead to the appearance of 'peanut'- and 'X'-like features with the edge-on profiles of three disc galaxies (IC 2531, NGC 4013 and UGC 2048). The subtraction from the images of a model representing the axisymmetric component of the galaxies reveals the contribution of the non-axisymmetric terms. We find a direct correspondence between the orbital profiles of 3D bars in models and the observed main morphological features of the residuals. We also apply a simple unsharp masking technique in order to study the sharpest features of the images. Our basic conclusion is that the morphology of the boxy 'bulges' of these galaxies can be explained by considering disc material trapped around stable 3D periodic orbits. In most models, these building-block periodic orbits are bifurcated from the planar central family of a non-axisymmetric component, usually a bar, at low-order vertical resonances. In such a case, the boxy 'bulges' are parts of bars seen edge-on. For the three galaxies we study, the families associated with the 'peanut' or 'X'-shape morphology are probably bifurcations at the vertical 2/1 or 4/1 resonance.  相似文献   

5.
6.
We carry out a detailed orbit analysis of gravitational potentials selected at different times from an evolving self-consistent model galaxy consisting of a two-component disc (stars+gas) and a live halo. The results are compared with a pure stellar model, subject to nearly identical initial conditions, which are chosen so as to make the models develop a large-scale stellar bar. The bars are also subject to hose-pipe (buckling) instability which modifies the vertical structure of the disc. The diverging morphological evolution of both models is explained in terms of gas radial inflow, the resulting change in the gravitational potential at smaller radii, and the subsequent modification of the main families of orbits, both in and out of the disc plane.   We find that dynamical instabilities become milder in the presence of the gas component, and that the stability of planar and 3D stellar orbits is strongly affected by the related changes in the potential — both are destabilized, with the gas accumulation at the centre. This is reflected in the overall lower amplitude of the bar mode and in the substantial weakening of the bar, which appears to be a gradual process. The vertical buckling of the bar is much less pronounced and the characteristic peanut shape of the galactic bulge almost disappears when there is a substantial gas inflow towards the centre. Milder instability results in a smaller bulge, the basic parameters of which are in agreement with observations. We also find that the overall evolution in the model with a gas component is accelerated because of the larger central mass concentration and the resulting decrease in the characteristic dynamical time.  相似文献   

7.
We use high-resolution N -body/smoothed particle hydrodynamics (SPH) simulations to study the hydrodynamical interaction between the Large Magellanic Cloud (LMC) and the hot halo of the Milky Way. We investigate whether ram pressure acting on the satellite's interstellar medium can explain the peculiarities observed in the H  i distribution and the location of the recent star formation activity.
Due to the present nearly edge-on orientation of the disc with respect to the orbital motion, compression at the leading edge can explain the high density region observed in H  i at the south-east border. In the case of a face-on disc (according to Mastropietro the LMC was moving almost face-on before the last perigalactic passage), ram pressure directed perpendicular to the disc produces a clumpy structure characterized by voids and high density filaments that resemble those observed by the Parkes H  i survey. As a consequence of the very recent edge-on motion, the Hα emission is mainly concentrated on the eastern side where 30 Doradus and most of the supergiant shells are located, although some Hα complexes form a patchy distribution on the entire disc. In this scenario, only the youngest stellar complexes show a progression in age along the leading border of the disc.  相似文献   

8.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   

9.
We present data for a sample of 45 spiral galaxies over a range of Hubble types, imaged in the near-IR J K bands. Parameters are calculated describing the bulge, disc and bar K -band light distributions, and we look for correlations showing the interrelation between these components. We find that bulge profiles are not well-fitted by the classic de Vaucouleurs profile, and that exponential or R 1/2 fits are preferred. The bulge-to-disc ratio correlates only weakly with Hubble type. Many of the galaxies show central reddening of their J  −  K colours, which we interpret as due to nuclear starbursts or dusty AGN. We define a new method for measuring the strength of bars, which we call 'equivalent angle'. We stress that this is better than the traditional bar–interbar contrast, as it is not subject to seeing and resolution effects. Bars are found in 40 of the 45 galaxies, nine of which had been previously classified as unbarred. Bar strengths are found not to correlate with disc surface brightness or the presence of near neighbours, but a tendency is found for the most strongly barred galaxies to lie within a restricted, intermediate range of bulge-to-disc ratio. Bar light profiles are found to be either flat or exponentially decreasing along their long axes, with profile type not correlating strongly with Hubble type. Bar short axis profiles are significantly asymmetric, with the steeper profile being generally on the leading edge, assuming trailing arms. In the K band we find bars with higher axial ratios than have been found previously in optical studies.  相似文献   

10.
Measuring the integrated stellar halo light around galaxies is very challenging. The surface brightness of these haloes is expected to be many magnitudes below dark sky and the central brightness of the galaxy. Here, I show that in some of the recent literature the effect of very extended Point Spread Function (PSF) tails on the measurements of halo light has been underestimated; especially in the case of edge-on disc galaxies. The detection of a halo along the minor axis of an edge-on galaxy in the Hubble Ultra Deep Field can largely be explained by scattered galaxy light. Similarly, depending on filter and the shape one assumes for the uncertain extended PSF, 20–80 per cent of the halo light found along the minor axis of scaled and stacked Sloan Digital Sky Survey (SDSS) edge-on galaxy images can be explained by scattered galaxy light. Scattered light also significantly contributes to the anomalous halo colours of stacked SDSS images. The scattered light fraction decreases when looking in the quadrants away from the minor axis. The remaining excess light is well modelled with a Sérsic profile halo with shape parameters based on star count halo detections of nearby galaxies. Even though, the contribution from PSF scattered light does not fully remove the need for extended components around these edge-on galaxies, it will be very challenging to make accurate halo light shape and colour measurements from integrated light without very careful PSF measurements and scattered light modelling.  相似文献   

11.
We present circumstantial evidence that the central region of the edge-on S0 galaxy NGC 4570, which harbours a 150-pc scale nuclear disc in addition to its main outer disc, has been shaped under the influence of a small (∼ 500 pc) bar. This is based on the discovery of two edge-on rings, the locations of which are consistent with the inner Lindblad and ultraharmonic resonances of a rapidly tumbling triaxial potential. Observed features in the photometry and rotation curve correspond nicely with the positions of the main resonances, strengthening the case for a tumbling bar potential. The relative blue colour of the ILR ring, and the complete absence of any detected ISM, indicates that the nuclear ring is made of relatively young (≲ 2 Gyr) stars. We discuss a possible secular evolution scenario for this complex multicomponent galaxy, which may also apply to many other S0 galaxies with observed rings and/or multiple disc components.  相似文献   

12.
We have modelled 38 barred galaxies by using near-infrared and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from H -band photometry, assuming a constant mass-to-light ratio. The halo component we choose corresponds to the so-called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed.
We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius,     , increases from 1.15 ± 0.25 in types SB0/a–SBab to 1.44 ± 0.29 in SBb and 1.82 ± 0.63 in SBbc–SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar     , whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of     , there are five cases, where the fast-rotating bar is ruled out by the adopted error estimates.
We also study the correlation between the parameter     and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds to actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or the colour.  相似文献   

13.
We analyse N -body galaxy merger experiments involving disc galaxies. Mergers of disc–bulge–halo models are compared to those of bulgeless, disc–halo models to quantify the effects of the central bulge on merger dynamics and the structure of the remnant. Our models explore galaxy mass ratios 1:1 through 3:1, and use higher bulge mass fractions than previous studies. A full comparison of the structural and dynamical properties with our observations is carried out. The presence of central bulges results in longer tidal tails, oblate final intrinsic shapes, surface brightness profiles with a higher Sérsic index, steeper rotation curves and oblate-rotator internal dynamics. Mergers of bulgeless galaxies do not generate long-lasting tidal tails, and their strong triaxiality seems inconsistent with observations; these remnants show shells, which we do not find in models including central bulges. Giant ellipticals with boxy isophotes and anisotropic dynamics cannot be produced by the mergers modelled here; they could be the result of mergers between lower luminosity ellipticals, themselves plausibly formed in disc-disc mergers.  相似文献   

14.
We investigate the orbital structure in a class of three-dimensional (3D) models of barred galaxies. We consider different values of the pattern speed, of the strength of the bar and of the parameters of the central bulge of the galactic model. The morphology of the stable orbits in the bar region is associated with the degree of folding of the x1 characteristic. This folding is larger for lower values of the pattern speed. The elongation of rectangular-like orbits belonging to x1 and to x1-originated families depends mainly on the pattern speed. A detailed investigation of the trees of bifurcating families in the various models shows that major building blocks of 3D bars can be supplied by families initially introduced as unstable in the system, but becoming stable at another energy interval. In some models without radial and vertical 2:1 resonances we find, except for the x1 and x1-originated families, also families related to the z -axis orbits, which support the bar. Bifurcations of the x2 family can build a secondary 3D bar along the minor axis of the main bar. This is favoured in the slowly rotating bar case.  相似文献   

15.
We present three-dimensional (3D) hydrodynamical simulations of ram pressure stripping of massive disc galaxies in clusters. Studies of galaxies that move face-on have predicted that in such a geometry the galaxy can lose a substantial amount of its interstellar medium. But only a small fraction of galaxies is moving face-on. In this work we focus on a systematic study of the effect of the inclination angle between the direction of motion and the galaxy's rotation axis.
In agreement with some previous works, we find that the inclination angle does not play a major role for the mass loss as long as the galaxy is not moving close to edge-on (inclination angle ≲60°). We explain this behaviour by extending Gunn & Gott's estimate of the stripping radius, which is valid for face-on geometries, to moderate inclinations.
The inclination plays a role as long as the ram pressure is comparable to pressures in the galactic plane, which can span two orders of magnitude. For very strong ram pressures, the disc will be stripped completely, and for very weak ram pressures, mass loss is negligible independent of inclination. We show that in non-edge-on geometries the stripping proceeds remarkably similar. A major difference between different inclinations is the degree of asymmetry introduced in the remaining gas disc.
We demonstrate that the tail of gas stripped from the galaxy does not necessarily point in a direction opposite to the galaxy's direction of motion. Therefore, the observation of a galaxy's gas tail may be misleading about the galaxy's direction of motion.  相似文献   

16.
We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [O  iii ] λ5007 emission line. Rotation and velocity dispersion are measured to a radius of 50 arcmin (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4 kpc, although our data beyond a radius of 5 kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disc, bulge and halo of M31.  相似文献   

17.
The cooling of gas in the centres of dark matter haloes is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. Following Gnedin et al., we improve this model by modifying the assumed invariant from M ( r ) r to     , where r and     are the current and orbit-averaged particle positions. We explore the effect of the bulge in the inner regions of the halo for different values of the bulge-to-disc mass ratio. We find that the bulge makes the velocity curve rise faster in the inner regions of the halo. We present an analytical fitting curve that describes the velocity curve of the halo after dissipation. The results should be useful for dark matter detection studies.  相似文献   

18.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

19.
The evolution of a stellar bar transforms not only the galactic disc, but also the host dark matter halo. We present high-resolution, fully self-consistent N -body simulations that clearly demonstrate that dark matter halo central density cusps flatten as the bar torques the halo. This effect is independent of the bar formation mode and occurs even for rather short bars. The halo and bar evolution is mediated by resonant interactions between orbits in the halo and the bar pattern speed, as predicted by linear Hamiltonian perturbation theory. The bar lengthens and slows as it loses angular momentum, a process that occurs even in rather warm discs. We demonstrate that the bar and halo response can be critically underestimated for experiments that are unable to resolve the relevant resonant dynamics; this occurs when the phase space in the resonant region is undersampled or plagued by noise.  相似文献   

20.
The existence of partially ionized, diffuse gas and dust clouds at kiloparsec scale distances above the central planes of edge-on, galaxy discs was an unexpected discovery about 20 years ago. Subsequent observations showed that this extended or extraplanar diffuse interstellar gas (EDIG) has rotation velocities approximately 10–20 per cent lower than those in the central plane, and has been hard to account for. Here, we present results of hydrodynamic models, with radiative cooling and heating from star formation. We find that in models with star formation generated stochastically across the disc, an extraplanar gas layer is generated as long as the star formation is sufficiently strong. However, this gas rotates at nearly the same speed as the midplane gas. We then studied a range of models with imposed spiral or bar waves in the disc. EDIG layers were also generated in these models, but primarily over the wave regions, not over the entire disc. Because of this partial coverage, the EDIG clouds move radially, as well as vertically, with the result that observed kinematic anomalies are reproduced. The implication is that the kinematic anomalies are the result of three-dimensional motions when the cylindrical symmetry of the disc is broken. Thus, the kinematic anomalies are the result of bars or strong waves, and more face-on galaxies with such waves should have an asymmetric EDIG component. The models also indicate that the EDIG can contain a significant fraction of cool gas, and that some star formation can be triggered at considerable heights above the disc mid-plane. We expect all of these effects to be more prominent in young, forming discs, to play a role in rapidly smoothing disc asymmetries and in working to self-regulate disc structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号