首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Out-of-field stray-light spots of the Herschel telescope optics relative to the PACS and SPIRE instrument apertures were modeled by ray tracing simulations with the Advanced Systems Analysis Program (ASAP, by Breault Research Organization) prior to launch. The predicted stray-light behaviour was verified by dedicated stray-light calibration observations in-flight. This resulted in a special feature of the Herschel Science Mission Planning Software, marking the sky positions of stray-light spots by the very bright infrared planetary sources Venus, Mars, Jupiter, and Saturn, as well as the Moon, thus avoiding contamination of scientific photometric observations by out-of-field stray-light of these sources.  相似文献   

2.
The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.  相似文献   

3.
AKARI, formerly known as ASTRO-F, is the second Japanese space mission to perform infrared astronomical observations. AKARI was launched on 21 February 2006 (UT) and brought into a sun-synchronous polar orbit at an altitude of 700 km by a JAXA M-V rocket. AKARI has a telescope with a primary-mirror aperture size of 685 mm together with two focal-plane instruments on board: the Infrared Camera (IRC), which covers the spectral range 2–26 μm and the Far-Infrared Surveyor (FIS), which operates in the range 50–180 μm. The telescope mirrors are made of sandwich-type silicon carbide, specially developed for AKARI. The focal-plane instruments and the telescope are cooled by a unique cryogenic system that kept the telescope at 6K for 550 days with 180 l super-fluid liquid Helium (LHe) with the help of mechanical coolers on board. Despite the small telescope size, the cold environment and the state-of-the-art detectors enable very sensitive observations at infrared wavelengths. To take advantage of the characteristics of the sun-synchronous polar orbit, AKARI performed an all-sky survey during the LHe holding period in four far-infrared bands with FIS and two mid-infrared bands with IRC, which surpasses the IRAS survey made in 1983 in sensitivity, spatial resolution, and spectral coverage. AKARI also made over 5,000 pointing observations at given targets in the sky for approximately 10 min each, for deep imaging and spectroscopy from 2 to 180 μm during the LHe holding period. The LHe ran out on 26 August 2007, since which date the telescope and instrument are still kept around 40K by the mechanical cooler on board, and near-infrared imaging and spectroscopic observations with IRC are now being continued in pointing mode.  相似文献   

4.
Emission from the Herschel telescope is the dominant source of radiation for the majority of SPIRE Fourier transform spectrometer (FTS) observations, despite the exceptionally low emissivity of the primary and secondary mirrors. Accurate modelling and removal of the telescope contribution is, therefore, an important and challenging aspect of FTS calibration and data reduction pipeline. A dust-contaminated telescope model with time invariant mirror emissivity was adopted before the Herschel launch. However, measured FTS spectra show a clear evolution of the telescope contribution over the mission and strong need for a correction to the standard telescope model in order to reduce residual background (of up to 7 Jy) in the final data products. Systematic changes in observations of dark sky, taken over the course of the mission, provide a measure of the evolution between observed telescope emission and the telescope model. These dark sky observations have been used to derive a time dependent correction to the telescope emissivity that reduces the systematic error in the continuum of the final FTS spectra to ~0.35 Jy.  相似文献   

5.
We study event-to-event variations in the abundance enhancements of the elements He through Pb for Fe-rich impulsive solar energetic-particle (SEP) events, and their relationship with properties of associated coronal mass ejections (CMEs) and solar flares. Using a least-squares procedure we fit the power-law enhancement of element abundances as a function of their mass-to-charge ratio A/Q to determine both the power and the coronal temperature (which determines Q) in each of 111 impulsive SEP events identified previously. Individual SEP events with the steepest element enhancements, e.g. ~?(A/Q)6, tend to be smaller, lower-fluence events with steeper energy spectra that are associated with B- and C-class X-ray flares, with cooler (~?2.5 MK) coronal plasma, and with narrow (°), slower (?1) CMEs. On the other hand, higher-fluence SEP events have flatter energy spectra, less-dramatic heavy-element enhancements, e.g. ~?(A/Q)3, and come from somewhat hotter coronal plasma (~?3.2 MK) associated with C-, M-, and even X-class X-ray flares and with wider CMEs. Enhancements in 3He/4He are uncorrelated with those in heavy elements. However, events with 3He/4He≥0.1 are even more strongly associated with narrow, slow CMEs, with cooler coronal plasma, and with B- and C-class X-ray flares than are other Fe-rich impulsive SEP events with smaller enhancements of 3He.  相似文献   

6.
Helium abundance variations in the solar wind have been studied using data obtained with Los Alamos plasma instrumentation on IMP 6, 7, and 8 from 1971 through 1978. For the first time, average flow characteristics have been determined as a function of helium abundance, A(He). Low and average values of A(He) are each preferentially identified with a different characteristic plasma ‘state’ these correspond to what have previously been recognized as the signatures of interplanetary magnetic field polarity reversals and high speed streams, respectively. Helium enhancements at 1 AU also can be identified with a characteristic plasma state, which includes high magnetic field intensity and low proton temperature. This is further evidence that such enhancements are a signal of coronal transient mass ejections. Long-term averages of A(He) at least partially reflect the relative frequency with which coronal streamers, holes, and transients extend their influence into the ecliptic plane at 1 AU. As a result, there is a real and pronounced solar cycle variation of solar wind H(He).  相似文献   

7.
Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR’s primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ, with an accuracy of two parts in 107, thereby improving today’s best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, G and of the gravitational inverse square law at 1.5-AU distances—with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25-mJ, 10-ps pulses at 1 kHz, and receiving asynchronous 1-kHz pulses from earth via a 12-cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1-mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities—with appropriate augmentation—may be able to participate in PLR. Since Phobos’ orbital period is about 8 h, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 yr of science operations. We discuss the PLR’s science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission’s primary objectives.  相似文献   

8.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

9.
The Exoplanet Characterization Observatory (EChO) is a concept of a dedicated space telescope optimized for low-resolution transit and occultation spectroscopy to study the exoplanet diversity through the composition of their atmospheres. The scope of this paper is to answer the following question: Can we schedule a nominal EChO mission, with targets known today (in mid 2013), given the science requirements, realistic performances and operational constraints? We examine this issue from the point of view of duration of the mission and the scheduling restrictions with a sample of exoplanet systems known nowadays. We choose different scheduling algorithms taking into account the science and operational constraints and we verified that it is fairly straightforward to schedule a mission scenario over the lifetime of EChO compliant with the science requirements. We identified agility as a critical constraint that reduces significantly the efficiency of the survey. We conclude that even with known targets today the EChO science objectives can be reached in the 4.5 years duration of the mission. We also show that it is possible to use gaps between exoplanet observations, to fit the required calibration observations, data downlinks and station keeping operations or even to observe more exoplanet targets to be discovered in the coming years.  相似文献   

10.
The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.  相似文献   

11.
M.G. Heaps  J.N. Bass  A.E.S. Green 《Icarus》1973,20(3):297-303
The planet Jupiter, like the Earth, possesses a magnetic field, and, therefore, auroral activity is very likely. In this work, the auroral emissions due to electron precipitation are estimated for a model atmosphere with and without helium. The incident primary electrons, which are characterized by representative spectra, are degraded in energy by applying the continuous slow down approximation. All secondaries, tertiaries, and higher generation electrons are assumed to be absorbed locally. A compilation of excitation, dissociation, and ionization cross section data for H, H2, and He are used to model all aspects of the energy deposition process. Volume emission rates are calculated from the total direct excitation rates, and appropriate corrections for cascading are applied. Integrated column intensities of several kiloRayleighs are obtained for the various vibrational levels of the Lyman and Werner bands of H2, as well as the triplet continuum a3Σg+b3Σu+. Helium emissions are relatively small because the majority of electrons are absorbed above the region of maximum He concentration. Atomic hydrogen emissions are due mainly to dissociative excitation of molecular hydrogen rather than direct excitation.  相似文献   

12.
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA’s small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA’s In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.  相似文献   

13.
The Space Environment Viability of Organics (SEVO) experiment is one of two scientific payloads aboard the triple-cube satellite Organism/ORganic Exposure to Orbital Stresses (O/OREOS). O/OREOS is the first technology demonstration mission of the NASA Astrobiology Small Payloads Program. The 1-kg, 1000-cm3 SEVO cube is investigating the chemical evolution of organic materials in interstellar space and planetary environments by exposing organic molecules under controlled conditions directly to the low-Earth orbit (LEO) particle and electromagnetic radiation environment. O/OREOS was launched on November 19, 2010 into a 650-km, 72°-inclination orbit and has a nominal operational lifetime of six months. Four classes of organic compounds, namely an amino acid, a quinone, a polycyclic aromatic hydrocarbon (PAH), and a metallo-porphyrin are being studied. Initial reaction conditions were established by hermetically sealing the thin-film organic samples in self-contained micro-environments. Chemical changes in the samples caused by direct exposure to LEO radiation and by interactions with the irradiated microenvironments are monitored in situ by ultraviolet/visible/near-infrared (UV/VIS/NIR) absorption spectroscopy using a novel compact fixed-grating CCD spectrometer with the Sun as its light source. The goals of the O/OREOS mission include: (1) demonstrating key small satellite technologies that can enable future low-cost astrobiology experiments, (2) deploying a miniature UV/VIS/NIR spectrometer suitable for in-situ astrobiology and other scientific investigations, (3) testing the capability to establish a variety of experimental reaction conditions to enable the study of astrobiological processes on small satellites, and (4) measuring the chemical evolution of organic molecules in LEO under conditions that can be extrapolated to interstellar and planetary environments. In this paper, the science and technology development of the SEVO instrument payload and its measurements are described.  相似文献   

14.
We present a method to derive the relative pointing offsets for SPIRE Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration targets, which were observed regularly throughout the Herschel mission. We construct ratios R obs(ν) of the spectra for all observations of a given source with respect to a reference. The reference observation is selected iteratively to be the one with the highest observed continuum. Assuming that any pointing offset leads to an overall shift of the continuum level, then these R obs(ν) represent the relative flux loss due to mispointing. The mispointing effects are more pronounced for a smaller beam, so we consider only the FTS short wavelength array (SSW, 958–1546 GHz) to derive a pointing correction. We obtain the relative pointing offset by comparing R obs(ν) to a grid of expected losses for a model source at different distances from the centre of the beam, under the assumption that the SSW FTS beam can be well approximated by a Gaussian. In order to avoid dependency on the point source flux conversion, which uses a particular observation of Uranus, we use extended source flux calibrated spectra to construct R obs(ν) for the SSOs. In order to account for continuum variability, due to the changing distance from the Herschel telescope, the SSO ratios are normalised by the expected model ratios for the corresponding observing epoch. We confirm the accuracy of the derived pointing offset by comparing the results with a number of control observations, where the actual pointing of Herschel is known with good precision. Using the method we derived pointing offsets for repeated observations of Uranus (including observations centred on off-axis detectors), Neptune, Ceres and NGC 7027. The results are used to validate and improve the point-source flux calibration of the FTS.  相似文献   

15.
Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose noise is reduced by a factor of 2–3, with a gain in the overall spectral sensitivity of 23 % and 21 % for the two detector bands, respectively.  相似文献   

16.
HIFI is a heterodyne spectrometer aboard the Herschel Space Observatory, providing high-spectral-resolution capabilities. Of its seven frequency bands, four (bands 3, 4, 6, and 7) employ Martin-Puplett diplexers to combine sky signal and local oscillator at the two linear polarizations H and V, prior to feeding them into the mixers (receivers). The optical path difference in each of these 8 diplexers must be tuned to the observed frequency. The required actuator currents were determined in flight before the start of routine science observations. We here report on regular (roughly quarterly) engineering test observations to validate the repeatability of the HIFI diplexers during the routine phase of Herschel operations. We find the optical path difference to be stable to within 0.4 % of the relevant wavelength, typically at the sub-micron level. We conclude that the repeatability and precision of the diplexer tuning mechanism are so high that science data are in no way negatively affected. With the diplexer calibration established and validated, this line of reasoning can be reversed, and the diplexers can be used as relative spectrometers to measure the local-oscillator frequency, i.e., to check the spectral purity of the local oscillator across the diplexer bands. This was done from before launch out to the last months of cryogenic operations in space.  相似文献   

17.
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (α Boo, α Cet, α Tau, β And, γ Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is ~2 % in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5 % in the blue and green band and 2 % in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5 % uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum νF ν = λF λ = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.  相似文献   

18.
Abstract Helium and neon were extracted from individual lunar ilmenite grains, approximately 100 μm in diameter, using a pulsed step-heating technique. Grains from lunar samples 71501 and 79035, believed to have been exposed to solar corpuscular radiation at greatly different times, were studied. The results found were consistent with the hypothesis that in addition to solar-wind-implanted gas, a second more deeply implanted component was present in both species of grains. Average isotopic ratios were determined giving equal weight to each of the particles. As found in depth studies employing chemical etching, both the 3He/4He and 20He/22Ne ratios were lower in the more deeply implanted gas than in the solar wind component. The 3He/4He ratio in the solar wind component of the more ancient grains was lower than that in the more recently exposed ones, whereas no difference was found for the more deeply embedded He. In the deeply embedded component of the ancient grains, the 4He/20Ne ratio was ~2×that found in the more recently exposed grains. In the shallowly implanted component, the ratio varied greatly from grain to grain, preventing comparison with the solar wind elemental composition.  相似文献   

19.
We study the abundances of the elements He through Pb in Fe-rich impulsive solar energetic-particle (SEP) events with measurable abundances of ions with atomic number Z>2 observed on the Wind spacecraft, and their relationship with coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). On an average the element abundances in these events are similar to coronal abundances at low Z but, for heavier elements, enhancements rise as a power law in the mass-to-charge ratio A/Q of the ions (at coronal temperatures of 2.5?–?3 MK) to a factor of 3 at Ne, 9 at Fe, and 900 for 76≤Z≤82. Energy dependences of abundances are minimal in the 2?–?15 MeV amu?1 range. The 111 of these Fe-rich impulsive SEP events we found, between November 1994 and August 2013 using the Wind spacecraft, have a 69 % association rate with CMEs. The CMEs are narrow with a median width of 75°, are characteristically from western longitudes on the Sun, and have a median speed of ≈?600 km?s?1. Nearly all SEP onsets occur within 1.5?–?5 h of the CME onset. The faster (>?700 km?s?1), wider CMEs in our sample are related to SEPs with coronal abundances indicating hot coronal plasma with fully ionized He, C, N and O and moderate enhancements of heavier elements, relative to He, but slower (<?700 km?s?1), narrower CMEs emerge from cooler plasma where higher SEP mass-to-charge ratios, A/Q, yield much greater abundance enhancements, even for C/He and O/He. Apparently, the open magnetic-reconnection region where the impulsive SEPs are accelerated also provides the energy to drive out CME plasma, accounting for a strong, probably universal, impulsive SEP-CME association.  相似文献   

20.
In this paper we study the field of Kepler open cluster NGC 6866 using the data obtained from Kepler mission collected for a period of 4 years. We search for the red clump (RC) stars amongst the red giant (RG) stars showing solar-like oscillations using median gravity-mode period spacings (ΔP). We find a RG star KIC 8263801 having median gravity-mode period spacing 173.7 ± 6.4 s. We claim based on the median gravity-mode period spacing that KIC 8263801 is a secondary red clump (SRC) star which is massive enough to have ignited Helium burning in a non degenerate core. In the literature, no classification for KIC 8263801 has been provided. This is the first time that a star located in the field of NGC 6866 is classified in this manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号