首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10−2 mol m−3 (i.e., ∼ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s−1 is capable of providing the cave CO2 level maxima up to 3 × 10−2 mol m−3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  相似文献   

2.
Ming Tan 《Climate Dynamics》2014,42(3-4):1067-1077
Inter-annual variation in the ratio of 18O to 16O of precipitation (δ18Op) in the monsoon regions of China (MRC, area approximately east of 100°E) has not yet been fully analyzed. Based on an analysis of the relationships between the time series of amount-weighted mean annual δ18O in precipitation (δ18Ow) and meteorological variables such as temperature, precipitation as well as atmospheric/oceanic circulation indices, it is recognized that the El Niño-Southern Oscillation (ENSO) cycle appears to be the dominant control on the inter-annual variation in δ18Op in the MRC. Further analysis shows that the trade wind plays a role in governing δ18Ow through affecting the intensity of the different summer monsoon circulations which are closely linked to the weakening (weaker than normal) and strengthening (stronger than normal) of the trade wind and gives the δ18Ow different values at or over inter-annual timescales. The southwest monsoon (SWM) drives long-distance transport of water vapor from Indian Ocean to the MRC, and along this pathway increasing rainout leads to more negative δ18Ow via Rayleigh distillation processes. In contrast, the southeast monsoon (SEM), which is consistent with the changes in the strength of the West Pacific subtropical high, drives short-distance water vapor transport from the West Pacific Ocean to the MRC and leads to less negative δ18Ow. Therefore, the δ18Ow value directly reflects the differences in influence between the SWM, which is strong when the SE trade wind is strong, and the SEM, which is strong when the SE trade wind is weak. In addition, the South China Sea Monsoon also transports local water vapor as well as plays a role in achieving the synchronization between the δ18Ow and ENSO. The author thus terms the δ18Op rhythm in the MRC the “circulation effect”. In turn, the δ18Op variation in the MRC has the potential to provide information on atmospheric circulation and the signal of δ18Op recorded in natural archives can then be used to deduce a long-term behavior of the tropical climate system.  相似文献   

3.
The seasonally varying moisture balance in a montane forest of Southeast Asia is reconstructed for the 20th century from the oxygen isotopic composition (δ18O) of subannual tree cellulose samples of Pinus kesiya growing at 1,500?m elevation on Doi Chiang Dao in northern Thailand. The cellulose δ18O values exhibit a distinctive annual cycle with amplitude of up to 12?‰, which we interpret to represent primarily the seasonal cycle of precipitation δ18O. The annual mean δ18O values correlate significantly with the amount of summer monsoon precipitation, and suggest a temporal weakening relationship between the South Asian monsoon and El Ni?o-Southern Oscillation over the late 20th century. The cellulose δ18O annual maxima values, which reflect the dry season moisture status, have declined progressively over the 20th century by about 3.5?‰. We interpret this to indicate a change in the contribution of the isotopically distinct fog water to the dry season soil moisture in response to rising temperature as well as deforestation.  相似文献   

4.
This two-year study investigates the relative influence of meteorological variables (precipitation amount and temperature), atmospheric circulation, air mass history, and moisture source region on Irish precipitation oxygen isotopes (δ18Op) on event and monthly timescales. Single predictor correlations reveal that on the event scale, 20% of δ18Op variability is attributable to the amount effect and 7% to the temperature effect while on the monthly timescale the North Atlantic Oscillation accounts for up to 20% of δ18Op variability and the amount and temperature effects are not significant. In comparison, multivariate linear regression reveals that the interaction of temperature and precipitation amount explains up to 40% of δ18Op variance at event and monthly timescales. Five-day kinematic back trajectories suggest that the amount-weighted mean δ18Op value of southerly- and northerly-derived events are lower by 2‰ relative to events derived from the west. Because air mass history and atmospheric circulation appear to influence δ18Op in Ireland, Irish paleo-δ18Op proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall.  相似文献   

5.
The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence δ18O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance (low level) and exit (upper level) region over the western equatorial Atlantic is used to define interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between δ18O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called ’‘amount effect‘’, often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in δ18O. In many locations the stable isotopic composition is closely related to El Niño-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and δ18O variability. Therefore many regions show a weakened relationship between SASM and δ18O, once the SASM signal is decomposed into its ENSO-, and non-ENSO-related variance.  相似文献   

6.
The stable isotopic composition of precipitation in different regions reflects climatic factors such as temperature, precipitation, moisture sources, and transport process. However, the isotopic variation in the region is usually much complicated due to the combined influences of these factors. A good understanding of climatic controls on the isotopic composition of precipitation can contribute to the study on isotopic tracer for climate and hydrology. To investigate the isotopic variation of precipitation and its climatic controls in the middle of the Tibetan Plateau, a monitoring station for stable isotope in precipitation has been established in Nagqu region, central Tibetan Plateau. We obtained 79 daily samples at Nagqu Meteorological Station in 2000. The observed δ 18O in precipitation showed a distinctly seasonal pattern with higher values in spring and winter and lower values in summer, despite of individually low values in winter due to extremely low temperature. To further understand this pattern, we evaluated the influence of temperature, precipitation, moisture sources, and moisture transport process on precipitation δ 18O. A multiple linear regression model represents quantitatively the dependence of precipitation δ 18O on precipitation and temperature: δ 18Oppt?=??0.30P???0.11T???14.8 (R 2?=?0.13, n?=?79, P?=?0.005), which indicates δ 18O values in precipitation are more dependent on precipitation amount than on temperature. In contrast, when the temperature is low enough (<2°C), δ 18O values in precipitation are mainly dependent on temperature: δ 18Oppt?=?0.53T???10.2 (R 2?=?0.44, n?=?19, P?=?0.002). The variation of δ 18O in precipitation is also closely related to moisture origins and transport trajectories. A model is set up to trace the trajectories for air masses arriving in the observed region, and the results demonstrated that humid marine air masses from the Indian Ocean generally have significantly lower δ 18O values than dry continental air masses from the north or local re-evaporation. During monsoon precipitation, the distance and depth of moisture transport as well as convective precipitation all lead to the large variability of δ 18O in precipitation.  相似文献   

7.

Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from −20.6 ‰ in cold season to −23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from −23.9 to −22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.

  相似文献   

8.
The multifractal properties and scaling behaviors of the long-term and recent 2000-year δ 18 O records of NGRIP ice core are investigated by the multifractal detrended fluctuation analysis method. The generalized Hurst exponents, multifractal scaling exponents, and singularity spectrums of two δ 18 O records are derived to verify the multifractiality of two records. And the multifractal behaviors of two records are obviously different, which may reflect the climate change of the recent 2000-year time is quite different from one of the long-term time. In addition, the probability distribution analysis of two δ 18 O records is presented to manifest the different multifractality between two δ 18 O records of NGRIP ice core. Our results will be helpful to research the climate change.  相似文献   

9.

This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM2.5 and PM10) along with stable isotopic composition (δ13C and δ15N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean?±?standard deviation at 1σ) of PM2.5 and PM10 were 223?±?69 µg m?3 and 328?±?65 µg m?3, respectively during winter season whereas the mean concentrations of PM2.5 and PM10 were 147?±?22 µg m?3 and 236?±?61 µg m?3, respectively during summer season. The mean value of δ13C (range: ??26.4 to ??23.4‰) and δ15N (range: 3.3 to 14.4‰) of PM2.5 were ??25.3?±?0.5‰ and 8.9?±?2.1‰, respectively during winter season whereas the mean value of δ13C (range: ??26.7 to ??25.3‰) and δ15N (range: 2.8 to 11.5‰) of PM2.5 were ??26.1?±?0.4‰ and 6.4?±?2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM2.5 and PM10 at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ13C with other C (OC, TC, OC/EC and OC/WSOC) components and δ15N with other N components (TN, NH4+ and NO3?) are also support the source identification of isotopic signatures.

  相似文献   

10.
Changes in maximum spring and summer temperature are expected to have impacts on plant phenology and the occurrence of forest fires. Homogenised instrumental records of maximum spring and summer temperature are available in northern France for the past century, as well as documentary records of grape harvest dates and forest fire frequencies. Here we provide a new proxy of seasonal climate obtained by the analysis of latewood tree ring cellulose isotopic composition (δ18O, δ13C and δD), from 15 living oak trees (Quercus petraea) sampled in the Fontainebleau forest, near Paris. For the past 30 years, we have conducted a study on the inter-tree (for oxygen isotopes) and inter-station (for oxygen and hydrogen) isotopic variability. Multiple linear regression statistical analyses are used to assess the response function of documentary and tree-ring isotopic records to a variety of climatic and hydrological parameters. This calibration study highlights the correlation between latewood tree-ring δ18O and δ13C, grape harvest dates and numbers of forest fire starts with maximum growing season (April to September) temperature, showing the potential of multiple proxy reconstructions to assess the past fluctuations of this parameter prior to the instrumental period.  相似文献   

11.
The series of δ18O values is presented for all precipitation events in Moscow in 2014. Precipitation samples were taken at the observation site of the Meteorological Observatory of Lomonosov Moscow State University (MSU MO), and the isotopic analysis was carried out in the isotopic laboratory of the Department of Geography of MSU. The concentration of stable 18O in precipitation over Moscow in 2014 varied from -0.09 to -26.29‰. The maximum amplitudes of δ18O were registered in March-April and October. The pronounced interrelation was revealed between the oxygen isotopic composition of precipitation and surface air temperature (the correlation coefficient is 0.85). The computation of back trajectories of air masses and the analysis of weather charts demonstrated that the most isotopically light precipitation is typical of relatively cold air masses slowly moving over the continent during the last five days before precipitation. In this case, the ongoing condensation leads to the progressive isotopic depletion of precipitation (more and more isotope-depleted precipitation is registered). On the contrary, fast air transport from the middle and even from high latitudes of the Atlantic Ocean leads to the relatively constant of δ18O values of precipitation.  相似文献   

12.
Precipitation isotope ratios (O and H) record the history of water phase transitions and fractionation processes during moisture transport and rainfall formation. Here, we evaluated the isotopic composition of precipitation over the central-southeastern region of Brazil at different timescales. Monthly isotopic compositions were associated with classical effects (rainfall amount, seasonality, and continentality), demonstrating the importance of vapor recirculation processes and different regional atmospheric systems (South American Convergence Zone-SACZ and Cold Fronts-CF). While moisture recycling and regional atmospheric processes may also be observed on a daily timescale, classical effects such as the amount effect were not strongly correlated (δ18O-precipitation rate r ≤ –0.37). Daily variability revealed specific climatic features, such as δ18O depleted values (~ –6‰ to –8‰) during the wet season were associated with strong convective activity and large moisture availability. Daily isotopic analysis revealed the role of different moisture sources and transport effects. Isotope ratios combined with d-excess explain how atmospheric recirculation processes interact with convective activity during rainfall formation processes. Our findings provide a new understanding of rainfall sampling timescales and highlight the importance of water isotopes to decipher key hydrometeorological processes in a complex spatial and temporal context in central-southeastern Brazil.  相似文献   

13.
During the last interglacial insolation maximum (Eemian, MIS 5e) the tropical and subtropical African hydrological cycle was enhanced during boreal summer months. The climate anomalies are examined with a General Circulation Model (ECHAM4) that is equipped with a module for the direct simulation of 18O and deuterium (H 2 18 O and HDO, respectively) in all components of the hydrological cycle. A mechanism is proposed to explain the physical processes that lead to the modelled anomalies. Differential surface heating due to anomalies in orbital insolation forcing induce a zonal flow which results in enhanced moisture advection and precipitation. Increased cloud cover reduces incoming short wave radiation and induces a cooling between 10°N and 20°N. The isotopic composition of rainfall at these latitudes is therefore significantly altered. Increased amount of precipitation and stronger advection of moisture from the Atlantic result in isotopically more depleted rainfall in the Eemian East African subtropics compared to pre-industrial climate. The East–West gradient of the isotopic rainfall composition reverses in the Eemian simulation towards depleted values in the east, compared to more depleted western African rainfall in the pre-industrial simulation. The modelled re-distribution of δ18O and δD is the result of a change in the forcing of the zonal flow anomaly. We conclude that the orbitally induced forcing for African monsoon maxima extends further eastward over the continent and leaves a distinct isotopic signal that can be tested against proxy archives, such as lake sediment cores from the Ethiopian region.  相似文献   

14.
To investigate ocean variability during the last millennium in the Western Gulf of Maine (GOM), we collected a 142-year-old living bivalve (Arctica islandica L.) in 2004, and three fossil A. islandica shells (calibrated 14CAMS = 1030 ± 78 ad; 1320 ± 45 ad; 1357 ± 40 ad) for stable isotope and growth increment analysis. A statistically significant relationship exists between modern GOM temperature records [shell isotope-derived (30 m) (r = ?0.79; P < 0.007), Prince 5 (50 m) (r = ?0.72; P < 0.019), Boothbay Harbor SST (r = ?0.76; P < 0.011)], and Labrador Current (LC) transport data from the Eastern Newfoundland Slope during 1993–2003. In all cases, as LC transport increased, GOM water temperatures decreased the following year. Decadal trends in the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) influence GOM water temperatures in the most recent period, with water temperatures decreasing during NAO and AMO negative modes most likely linked to LC transport and Gulf Stream interaction. Mean shell-derived isotopic changes (δ18Oc) during the last 1,000 years were +0.47‰ and likely reflect a 1–2°C cooling from 1000 ad to present. Based on these results, we suggest that observed cooling in the GOM during the last millennium was due to increased transport and/or cooling of the LC, and decreased Gulf Stream influence on the GOM.  相似文献   

15.
We present a new event-scale catalog of stable isotopic measurements from 5?years of storm events at 4 sites in southern California, which is used to understand the storm to storm controls on the isotopic composition of precipitation and validate the event-scale performance of an isotope-enabled GCM simulation (IsoGSM) (Yoshimura et?al. 2008). These analyses are motivated to improve the interpretation of proxy records from this region and provide guidance in testing the skill of GCMs in reproducing the hydrological variability in the western US. We find that approximately 40% of event-scale isotopic variability arises from the percentage of precipitation that is convective and the near surface relative humidity in the days prior to the storms landfall. The additional isotopic variability arises from the fact that storms arriving from different source regions advect moisture of distinct isotopic compositions. We show using both field correlation and Lagrangian trajectory analysis that the advection of subtropical and tropical moisture is important in producing the most isotopically enriched precipitation. The isotopic catalog is then used along with satellite-derived δD retrievals of atmospheric moisture to benchmark the performance of the IsoGSM model for the western US. The model is able to successfully replicate the observed isotopic variability suggesting that it is closely reproducing the moisture transport and storm track dynamics that drive the large storm-to-storm isotopic range. Notably, we find that an increase in moisture flux from the central tropical Pacific leads to a convergence of isotopically enriched water vapor in the subtropics and consequently an increase in δ18O of precipitation at sites along the entire west coast. Changes in poleward moisture flux from the central Tropical Pacific have important implications for both the global hydrological cycle and regional precipitation amounts and we suggest such changes can be captured through instrumental and proxy-reconstruction of the spatiotemporal isotopic patterns in the precipitation along the west coast of the US.  相似文献   

16.
This paper examines the potential of the stable isotopic ratios, 18O/16O ( 18Oice)and 2H/1H ( Dice), preserved in mid to low latitude glaciers as a toolfor paleoclimate reconstruction. Ice cores are particularly valuable as they contain additional data, such as dust concentrations, aerosol chemistry, and accumulation rates, that can be combined with the isotopic information to assist with inferences about the regional climate conditions prevailing at the time of deposition. We use a collection of multi-proxy ice core histories to explore the 18O-climate relationship over the last 25,000 years that includes both Late Glacial Stage (LGS) and Holocene climate conditions. These results suggest that on centennial to millennial time scales atmospheric temperature is the principal control on the 18Oice of the snowfall that sustains these high mountainice fields.Decadally averaged 18Oice records from threeAndean and three Tibetan ice cores are composited to produce a low latitude 18Oice history for the last millennium. Comparison ofthis ice core composite with the Northern Hemisphere proxy record (1000–2000A.D.) reconstructed by Mann et al. (1999) and measured temperatures(1856–2000) reported by Jones et al. (1999) suggests the ice cores have captured the decadal scale variability in the global temperature trends. These ice cores show a 20th century isotopic enrichment that suggests a large scale warming is underway at low latitudes. The rate of this isotopically inferred warming is amplified at higher elevations over the Tibetan Plateau while amplification in the Andes is latitude dependent with enrichment (warming) increasing equatorward. In concert with this apparent warming, in situobservations reveal that tropical glaciers are currently disappearing. A brief overview of the loss of these tropical data archives over the last 30 years is presented along with evaluation of recent changes in mean 18Oice composition. The isotopic composition of precipitation should be viewed not only as a powerful proxy indicator of climate change, but also as an additional parameter to aid our understanding of the linkages between changes in the hydrologic cycle and global climate.  相似文献   

17.
The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation.  相似文献   

18.
Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO? regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.  相似文献   

19.
We present new tree-ring width, δ13C, and δ18O chronologies from the Koksu site (49°N, 86° E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.  相似文献   

20.
High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号