首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.  相似文献   

2.
Numerical simulations using a version of the GFDL/NOAA Modular Ocean Model(MOM 3) are analyzed to demonstrate interdecadal pathway changes from the subtropics to the tropics in the South Pacific Ocean.After the 1976-77 climate shift,the subtropical gyre of the South Pacific underwent significant changes,characterized by a slowing down in its circulation and a southward displacement of its center by about 5-10 latitude on the western side.The associated circulation altered its flow path in the northwestern part of the subtropical gyre,changing from a direct pathway connecting the subtropics to the tropics before the shift to a more zonal one after.This effectively prevented some subtropical waters from directly entering into the western equatorial Pacific.Since waters transported onto the equator around the subtropical gyre are saline and warm,such changes in the direct pathway and the associated reduction in equatorward exchange from the subtropics to the tropics affected water mass properties downstream in the western equatorial Pacific,causing persisted freshening and cooling of subsurface water as observed after the late 1970s.Previously,changes in gyre strength and advection of temperature anomalies have been invoked as mechanisms for linking the subtropics and tropics on interdecadal time scales.Here we present an additional hypothesis in which geographic shifts in the gyre structure and location(a pathway change) could play a similar role.  相似文献   

3.
《大气与海洋》2012,50(4):307-317
ABSTRACT

This study investigates the response of the subtropical gyre circulation in the North Pacific Ocean to quadrupled CO2 using the Community Earth System Model, version 1 (CESM1). In particular, an overriding technique is applied to isolate and quantify the effects of wind stress and thermal warming caused by CO2 emissions. Results show that, in response to the increase in CO2, the total mass transport in the subtropical gyre is reduced by approximately 11%. This reduction results mainly from negative anomalies of the wind stress curl over the subtropical region, with a smaller contribution from the thermal warming effect. Furthermore, a detailed analysis finds that the change in the subtropical gyre is baroclinic in nature [i.e., the gyre appears to be spin-up in the upper ocean (above 300?m) but spin-down in the lower thermocline (from 300 to 1500?m)]. This reversal between the upper ocean and lower thermocline is a result of the thermal warming effect, which intensifies ocean stratification, hindering the transfer of momentum from the upper layers to the lower layers and leading to an acceleration of the gyre in the upper ocean but a deceleration in the lower thermocline. Another feature of the response of the subtropical gyre to quadrupled CO2 is the respective poleward and equatorward movements of its northern and southern boundaries, which is a result of the change in the zero wind stress curl lines.  相似文献   

4.
To what extent is tropical variability forced from the North Pacific through ocean pathways relative to locally generated variability and variability forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model, consisting of a global, atmospheric general circulation model and a 4½-layer, reduced-gravity, Pacific-Ocean model. Three solutions are obtained; with coupling over the entire basin (CNT), with coupling confined to the tropics and wind stress and heat fluxes in the North and South Pacific specified by climatology (TP), and with coupling confined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output from CNT (NPF). It is found that there are two distinct signals forced in the North Pacific that can impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat flux anomalies in the subtropical North Pacific. The first signal is relatively fast, impacts tropical variability less than a year after forcing, is triggered from November to March, and propagates as a first-mode baroclinic Rossby wave. The second signal is only triggered during springtime when buoyancy forcing can effectively generate higher-order baroclinic modes through subduction anomalies into the permanent thermocline, and it reaches the equator 4–5 years after forcing. The slow signal is found to initiate tropical variability more efficiently than the fast signal with one standard deviation in subtropical zonal wind stress forcing tropical SST anomalies centered on the equator at 135°W of approximately 0.5°C. Allowing extratropically forced tropical variability is found to shift primarily 2-year ENSO variability in a tropics-alone simulation to a more realistic range of 2–6 years.  相似文献   

5.
At least two main oceanic fronts (the subarctic and subtropical fronts) exist in the North Pacific. Especially in the subtropical frontal zone (STFZ), the sea subsurface temperature gradient is significantly larger than that of the surface layer in winter. Subseasonal interaction between the subsurface subtropical front and overlaying atmosphere is revealed by using empirical orthogonal function (EOF) analysis of oceanic temperature gradient. The first EOF mode mainly corresponds to the atmosphere-to-ocean influences. With the enhanced westerly wind, a cold sea surface temperature anomaly (SSTA) appears and then passes down to affect the subsurface ocean. However, the second EOF mode indicates the ocean-to-atmosphere forcing. For the second mode, cold oceanic temperature anomaly generates in the subsurface layer and passes up, which makes the SST gradient increasing. Due to the increasing atmospheric baroclinicity, the enhanced westerly wind leads to more heat fluxes from the ocean to the atmosphere, which results in a colder SSTA and a larger SST gradient in the STFZ. Therefore, a positive ocean-atmosphere feedback begins to maintain in the mid-latitude in winter.  相似文献   

6.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

7.
ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM   总被引:1,自引:1,他引:0  
The teleconnections of the El Niño/Southern Oscillation (ENSO) in future climate projections are investigated using results of the coupled climate model ECHAM5/MPI-OM. For this, the IPCC SRES scenario A1B and a quadrupled CO2 simulation are considered. It is found that changes of the mean state in the tropical Pacific are likely to condition ENSO teleconnections in the Pacific North America (PNA) region and in the North Atlantic European (NAE) region. With increasing greenhouse gas emissions the changes of the mean states in the tropical and sub-tropical Pacific are El Niño-like in this particular model. Sea surface temperatures in the tropical Pacific are increased predominantly in its eastern part and redistribute the precipitation further eastward. The dynamical response of the atmosphere is such that the equatorial east–west (Walker) circulation and the eastern Pacific inverse Hadley circulation are decreased. Over the subtropical East Pacific and North Atlantic the 200 hPa westerly wind is substantially increased. Composite maps of different climate parameters for positive and negative ENSO events are used to reveal changes of the ENSO teleconnections. Mean sea level pressure and upper tropospheric zonal winds indicate an eastward shift of the well-known teleconnection patterns in the PNA region and an increasing North Atlantic oscillation (NAO) like response over the NAE region. Surface temperature and precipitation underline this effect, particularly over the North Pacific and the central North Atlantic. Moreover, in the NAE region the 200 hPa westerly wind is increasingly related to the stationary wave activity. Here the stationary waves appear NAO-like.  相似文献   

8.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   

9.
On the predictability of decadal changes in the North Pacific   总被引:2,自引:0,他引:2  
 The predictability of decadal changes in the North Pacific is investigated with an ocean general circulation model forced by simplified and realistic atmospheric conditions. First, the model is forced by a spatially fixed wind stress anomaly pattern characteristic for decadal North Pacific climate variations. The time evolution of the wind stress anomaly is chosen to be sinusoidal, with a period of 20 years. In this experiment different physical processes are found to be important for the decadal variations: baroclinic Rossby waves dominate the response. They move westward and lead to an adjustment of the subtropical and subpolar gyre circulations in such a way that anomalous temperatures in the central North Pacific develop as a delayed response to the preceding wind stress anomalies. This delayed response provides not only a negative feedback but also bears the potential for long-term predictions of upper ocean temperature changes in the central North Pacific. It is shown by additional experiments that once these Rossby waves have been excited, decadal changes of the upper ocean temperatures in the central North Pacific evolve without any further anomalous atmospheric forcing. In the second part, the model is forced by surface heat flux and wind stress observations for the period 1949–1993. It is shown that the same physical processes which were found to be important in the simplified experiments also govern the evolution of the upper ocean in this more realistic simulation. The 1976/77 cooling can be mainly attributed to anomalously strong horizontal advection due to the delayed response to persistent wind stress curl anomalies in the early 1970s rather than local anomalous atmospheric forcing. This decadal change could have been predicted some years in advance. The subsequent warming in the late 1980s, however, cannot be mainly explained by advection. In this case, local anomalous atmospheric forcing needs to be considered. Received: 6 July 1998 / Accepted: 16 October 1999  相似文献   

10.
In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600?years. The model used is the Bergen Climate Model, a fully coupled atmosphere–ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole–to–equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high–latitude North Pacific the ocean loses more heat, and large–scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere–stratosphere coupling, tropical–extratropical teleconnections and extratropical ocean–atmosphere interactions for describing NPDV.  相似文献   

11.
Based on coupled modelling evidence we argue that topographically-induced modifications of the large-scale atmospheric circulation during the last glacial maximum may have led to a reduction of the westerlies, and a slowdown of the Pacific subtropical gyre as well as to an intensification of the Pacific subtropical cell. These oceanic circulation changes generate an eastern North Pacific warming, an associated cooling in the Kuroshio area, as well as a cooling of the tropical oceans, respectively. The tropical cooling pattern resembles a permanent La Niña state which in turn forces atmospheric teleconnection patterns that lead to an enhancement of the subtropical warming by reduced latent and sensible cooling of the ocean. In addition, the radiative cooling due to atmospheric CO2 and water vapor reductions imposes a cooling tendency in the tropics and subtropics, thereby intensifying the permanent La Niña conditions. The remote North Pacific response results in a warming tendency of the eastern North Pacific which may level off the effect of the local radiative cooling. Hence, a delicate balance between oceanic circulation changes, remotely induced atmospheric flux anomalies as well local radiative cooling is established which controls the tropical and North Pacific temperature anomalies during the last glacial maximum. Furthermore, we discuss how the aftermath of a Heinrich event may have affected glacial temperatures in the Pacific Ocean.  相似文献   

12.
Regional climate models, such as RegCM3, generally show large biases in the simulation of western North Pacific (WNP) summer monsoon (WNPSM). In this study, the authors improved the simulation of WNPSM by applying the convection suppression criterion based on the averaged relative humidity from cloud base to cloud top. The simulated rainfall and monsoon circulation are significantly improved. The suppressed convective heating associated with the decrease in convective rainfall simulates a low-level anomalous anticyclone to its north. The anomalous anticyclone reduces the intensity of low-level southwesterly flow and the wind speed at 10 m. The reduction in wind speed at 10 m decreases the evaporation at sea surface. The less supply of water vapor from underlying ocean in turn favors less convective rainfall. The overestimation of simulated convective percentages and the cold bias of 2 m air temperature are also reduced. The different effects of convection suppression criterion in stand-alone RegCM3 and corresponding regional air–sea coupled model are also discussed.  相似文献   

13.
基于近40 a NCEP/NCAR再分析月平均高度场、风场、涡度场、垂直速度场以及NOAA重构的海面温度(sea surface temperature,SST)资料和美国联合台风预警中心(Joint Typhoon Warning Center, JTWC)热带气旋最佳路径资料,利用合成分析方法,研究了前期春季及同期夏季印度洋海面温度同夏季西北太平洋台风活动的关系。结果表明:1)前期春季印度洋海温异常(sea surface temperature anoma1y,SSTA)尤其是关键区位于赤道偏北印度洋和西南印度洋地区对西北太平洋台风活动具有显著的影响,春季印度洋海温异常偏暖年,后期夏季,110°~180°E的经向垂直环流表现为异常下沉气流,对应风场的低层低频风辐散、高层辐合的形势,这种环流形势使得低层水汽无法向上输送,对流层中层水汽异常偏少,纬向风垂直切变偏大,从而夏季西北太平洋台风频数偏少、强度偏弱,而异常偏冷年份则正好相反。2)春季印度洋异常暖年,西北太平洋副热带高压加强、西伸;而春季印度洋异常冷年,后期夏季西北太平洋副热带高压减弱、东退,这可能是引起夏季西北太平洋台风变化的另一原因。  相似文献   

14.
2013年影响海南热带气旋异常偏多成因分析   总被引:1,自引:0,他引:1  
利用1983-2013年热带气旋年鉴、NCEP/NCAR全球再分析格点资料及国家气候中心74项环流指数资料等,统计分析了近30a西太平洋以及影响海南的热带气旋特征,并对2013年西太平洋热带气旋偏多、秋台集中以及影响海南热带气旋偏多的异常特征从天气学等方面进行了分析。结果表明,副热带高压、夏季风、越赤道气流、海表温度及北半球极涡等环流系统异常,是形成2013年西太平洋热带气旋偏多的主要原因。南半球冷高压发展激发越赤道气流增强,引发赤道西风加强;副热带高压偏北偏弱,夏季风增强,副高南侧热带辐合带对流活跃;南海-西太平洋海表温度偏高;极涡偏弱偏西,经向环流偏弱,中纬度冷空气活动不频繁等。多条件共同作用,有利于西太平洋热带气旋的生成。另外,副高呈东西向分布,南海海表温度偏高使得南海及菲律宾以东生成的热带气旋易于向西移动影响海南。  相似文献   

15.
我国华南3月份降水年代际变化的特征   总被引:5,自引:2,他引:3  
利用1951~2005年华南3月份降水资料、太平洋年代际振荡(PDO)指数以及NCEP再分析资料,对华南3月份降水年代际变化特征、及其对应的大尺度环流以及与PDO的关系进行了分析。结果表明,华南3月份降水存在显著的年代际变化特征,并且Mann-Kendal突变检验表明华南3月份降水在1978年左右发生年代际突变,从之前的降水偏少转变为降水偏多。我国华南3月份降水与PDO有着显著的相关。进一步研究表明,在年代际降水偏少时期,PDO处于负位相(北太平洋海温偏高,中东太平洋海温偏低),北太平洋海平面气压场和高度场偏高,亚洲大陆海平面气压场和高度场偏低,赤道西太平洋到赤道东印度洋附近的海平面气压场偏低,赤道辐合带附近地区的高度场偏低,东亚对流层大气偏暖,西太平洋副热带高压偏东,东亚高空急流偏北,东亚Hadley环流偏弱。在年代际降水偏多时期,PDO处于正位相,情况则与降水偏少时期相反。  相似文献   

16.
Recent observations suggest Antarctic Intermediate Water (AAIW) properties are changing. The impact of such variations is explored using idealised perturbation experiments with a coupled climate model, HadCM3. AAIW properties are altered between 10 and 20°S in the South Atlantic, maintaining constant potential density. The perturbed AAIW remains subsurface in the South Atlantic, but as it moves northwards, it surfaces and interacts with the atmosphere leading to density anomalies due to heat exchanges. For a cooler, fresher AAIW, there is a significant decrease in the mean North Atlantic sea surface temperature (SST), of up to 1°C, during years 51?C100. In the North Atlantic Current region there are persistent cold anomalies from 2,000?m depth to the surface, and in the overlying atmosphere. Atmospheric surface pressure increases over the mid-latitude Atlantic, and precipitation decreases over northwest Africa and southwest Europe. Surface heat flux anomalies show that these impacts are caused by changes in the ocean rather than atmospheric forcing. The SST response is associated with significant changes in the Atlantic meridional overturning circulation (MOC). After 50?years there is a decrease in the MOC that persists for the remainder of the simulation, resulting from changes in the column-averaged density difference between 30°S and 60°N. Rather than showing a linear response, a warmer, saltier AAIW also leads to a decreased MOC strength for years 51?C100 and resulting cooling in the North Atlantic. The non-linearity can be attributed to opposing density responses as the perturbed water masses interact with the atmosphere.  相似文献   

17.
In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.  相似文献   

18.
我国华南3月份降水异常的可能影响因子分析   总被引:4,自引:3,他引:1  
利用1951~2005年华南地区3月份的降水资料、NOAA海温资料、Ni?o3.4指数和NCEP再分析资料,分析了华南3月份降水异常与同期环流场、全球海温场的关系,从环流和海温的角度揭示了华南3月份降水异常的可能原因。结果表明,当华南3月份降水偏多(少)时,在对流层中低层,北太平洋海区存在气旋(反气旋)性环流异常,西太平洋及南海海面上存在反气旋(气旋)性环流异常,这样的环流异常有利(不利)于东南暖湿气流与北方东部异常冷空气在华南地区形成水汽辐合,导致降水显著增多(减少)。进一步的分析表明,ENSO和北印度洋及南海附近海温是影响华南3月份降水异常的重要外强迫因子,ENSO对华南3月降水异常的影响是通过影响春季西太平洋副热带高压和低层风场异常实现的,而北印度洋及南海附近海温对华南3月降水异常的影响则是通过垂直环流场异常和低层风场以及西太平洋副热带高压异常来实现的。  相似文献   

19.
The response of the North Atlantic subpolar gyre (SPG) to a persistent positive (or negative) phase of the North Atlantic oscillation (NAO) is investigated using an ocean general circulation model forced with idealized atmospheric reanalysis fields. The integrations are analyzed with reference to a base-line integration for which the model is forced with idealized fields representing a neutral state of the NAO. In the positive NAO case, the results suggest that the well-known cooling and strengthening of the SPG are, after about 10 years, replaced by a warming and subsequent weakening of the SPG. The latter changes are caused by the advection of warm water from the subtropical gyre (STG) region, driven by a spin-up of the Atlantic meridional overturning circulation (AMOC) and the effect of an anomalous wind stress curl in the northeastern North Atlantic, which counteracts the local buoyancy forcing of the SPG. In the negative NAO case, however, the SPG response does not involve a sign reversal, but rather shows a gradual weakening throughout the integration. The asymmetric SPG-response to the sign of persistent NAO-like forcing and the different time scales involved demonstrate strong non-linearity in the North Atlantic Ocean circulation response to atmospheric forcing. The latter finding indicates that analysis based on the arithmetic difference between the two NAO-states, e.g. NAO+ minus NAO?, may hide important aspects of the ocean response to atmospheric forcing.  相似文献   

20.
聂高臻  黄彬 《山东气象》2022,42(1):74-82
2021年秋季(9—11月)北半球大气环流特征为:极涡整体呈单极型,中高纬环流呈5波型分布,欧亚地区西风带环流形势季节内调整大,副热带高压(以下简称“副高”)偏强,西伸明显。秋季我国近海大风过程主要由冷空气、温带气旋和热带气旋影响造成。在12次8级以上大风过程中,冷空气影响8次,温带气旋影响6次,台风影响4次。西北太平洋和南海共生成9个台风,其中5个台风进入我国近海,在东西带状分布的副高影响下,近海台风主要活跃于南部海域;全球其他海域共命名热带气旋18个。我国出现2 m以上大浪过程的日数为74 d,约占总日数的81%,大浪过程与大风过程联系密切。秋季我国近海海面温度整体偏高,随着冷空气的逐渐活跃,北部海区和沿岸海域海面降温迅速,沿岸海面温度梯度加大,我国近海海域中,海面温度梯度最大的区域出现在东海。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号