首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory is composed of a set of fourteen double sideband mixers. We discuss the general problem of the sideband ratio (SBR) determination and the impact of an imbalanced sideband ratio on the line calibration in double sideband heterodyne receivers. The HIFI SBR is determined from a combination of data taken during pre-launch gas cell tests and in-flight. The results and some of the calibration artefacts discovered in the gas cell test data are presented here along with some examples of how these effects appear in science data taken in orbit.  相似文献   

2.
A satellite communication system suitable for distribution of local oscillator reference signals for a widely spaced microwave array has been developed and tested experimentally. The system uses a round-trip correction method to remove effects of atmospheric fluctuations and radial motion of the satellite. This experiment was carried out using Telstar-5, a commercial Ku-band geostationary satellite. A typical Ku-band satellite has uplink and downlink capacity at 14–14.5 GHz and 11.7–12.2 GHz, respectively. For this initial experiment, both earth stations were located at the same site to facilitate direct comparison of the received signals. The local oscillator reference frequency was chosen to be 300 MHz and was sent as the difference between two Ku-band tones. The residual error after applying the round trip correction has been measured to be better than 3 ps for integration times ranging from 1 to 2000 s. For integration times greater than 500 s, the system outperforms a pair of hydrogen masers with the limitation believed to be ground-based equipment phase stability. The idea of distributing local oscillators using a geostationary satellite is not new; several researchers experimented with this technique in the eighties, but the achieved accuracy was 3 to 100 times worse than the present results. Since then, the cost of both leased satellite bandwidth and the Ku-band ground equipment has dropped substantially and the performance of various components has improved. An important factor is the availability of narrow bands which can be leased on a communications satellite. We lease three 100 kHz bands at approximately one hundredth the cost of a full 36 MHz-wide transponder. Further tests of the system using terminals separated by large distances and comparison tests with two hydrogen masers and radio interferometry of astronomical objects are needed.  相似文献   

3.
The different algorithms appropriate for point source photometry on data from the SPIRE instrument on-board the Herschel Space Observatory, within the Herschel Interactive Processing Environment (HIPE) are compared. Point source photometry of a large ensemble of standard calibration stars and dark sky observations is carried out using the 4 major methods within HIPE: SUSSEXtractor, DAOphot, the SPIRE Timeline Fitter and simple Aperture Photometry. Colour corrections and effective beam areas as a function of the assumed source spectral index are also included to produce a large number of photometric measurements per individual target, in each of the 3 SPIRE bands (250, 350, 500μm), to examine both the accuracy and repeatability of each of the 4 algorithms. It is concluded that for flux densities down to the level of 30mJy that the SPIRE Timeline Fitter is the method of choice. However, at least in the 250 and 350μm bands, all 4 methods provide photometric repeatability better than a few percent down to at approximately 100mJy. The DAOphot method appears in many cases to have a systematic offset of ~8 % in all SPIRE bands which may be indicative of a sub-optimal aperture correction. In general, aperture photometry is the least reliable method, i.e. largest scatter between observations, especially in the longest wavelength band. At the faintest fluxes, <30mJy, SUSSEXtractor or DAOphot provide a better alternative to the Timeline Fitter.  相似文献   

4.
The Exoplanet Characterization Observatory (EChO) is a concept of a dedicated space telescope optimized for low-resolution transit and occultation spectroscopy to study the exoplanet diversity through the composition of their atmospheres. The scope of this paper is to answer the following question: Can we schedule a nominal EChO mission, with targets known today (in mid 2013), given the science requirements, realistic performances and operational constraints? We examine this issue from the point of view of duration of the mission and the scheduling restrictions with a sample of exoplanet systems known nowadays. We choose different scheduling algorithms taking into account the science and operational constraints and we verified that it is fairly straightforward to schedule a mission scenario over the lifetime of EChO compliant with the science requirements. We identified agility as a critical constraint that reduces significantly the efficiency of the survey. We conclude that even with known targets today the EChO science objectives can be reached in the 4.5 years duration of the mission. We also show that it is possible to use gaps between exoplanet observations, to fit the required calibration observations, data downlinks and station keeping operations or even to observe more exoplanet targets to be discovered in the coming years.  相似文献   

5.
1H 0323+342 is a rather radio-loud narrow-line Seyfert 1 galaxy (NLS1) with γ-ray emission. Optical observations were carried out in B and R bands which covered 6 nights in 2011 to obtain light curves of 1H 0323+342. The difference image subtraction method was used to deal with the data of 1H 0323+342 because of the existence of extended host galaxy. Optical variability on day timescale was reported here. We also monitored the first γ-ray NLS1 SDSS J094857.3+002225 and confirmed the existence of intranight optical variability (INOV). These indicated the existence of a relativistic jet in these NLS1s.  相似文献   

6.
The nature of the three-minute and five-minute oscillations observed in sunspots is considered to be an effect of propagation of magnetohydrodynamic (MHD) waves from the photosphere to the solar corona. However, the real modes of these waves and the nature of the filters that result in rather narrow frequency bands of these modes are still far from being generally accepted, in spite of a large amount of observational material obtained in a wide range of wave bands. The significance of this field of research is based on the hope that local seismology can be used to find the structure of the solar atmosphere in magnetic tubes of sunspots. We expect that substantial progress can be achieved by simultaneous observations of the sunspot oscillations in different layers of the solar atmosphere in order to gain information on propagating waves. In this study we used a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere – corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to the optical ones. This implies an MHD wave traveling upward inside the umbral magnetic tube of the sunspot. For the five-minute oscillations the similarity in spectral details could be found only for optical oscillations at the chromospheric level in the umbral region or very close to it. The time delays seem to be similar. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records. Their nature still requires further observational and theoretical study for even a preliminary discussion.  相似文献   

7.
闭合相位法是实现长基线恒星光干涉高分辨成像的重要技术手段之一,获得精确的闭合相位信息是进行光干涉图像重构的先决条件.提出一种基于精密光程差调制的时域干涉信号闭合相位检测方法,在3路干涉臂上进行非冗余精密光程调制,并通过多次干涉测量结合数据拟合的方法消除光程差调制中存在的正弦误差,使得光程调制的精度达到20 nm以内.引入高速探测器件提升时域干涉信号的采样频率,对探测器上获得的时域干涉信号进行傅立叶变换处理,获得3路干涉臂精确的闭合相位信息.室内实验结果表明,基于精密光程调制的时域信号闭合相位计算精度可以达到1/50波长以内.  相似文献   

8.
Based on the long-term data from observations, we present an evidence for its spectral index variability behaviour in optical bands for BL Lacertae object S5 0716+714. We find that the spectral index variability period is in agreement with the flux variability period of about 1180 days in optical bands. We also find that the spectral index variability has periods of about 71 and 60 days which cannot be compared with the amplitude of long-term variability.  相似文献   

9.
Karlický  Marian 《Solar physics》1998,179(2):421-430
For radio emission at the frequency corresponding to the second harmonic of the local plasma frequency, the optical thickness in the solar atmosphere is calculated. Three types of models are assumed: the model with radio emission from the narrow transition region, and models with radio emission from a cool and dense plasma filament embedded in hotter plasma at the transition region and in the corona. The optical thickness is computed by integration of the collisional (free–free) absorption along a radio-ray path radial in the solar atmosphere. In all models considered the optical thickness can be sufficiently low for appropriate parameters. For example, in the narrow (<100 km) transition region where the density scale height is much less than that of the pressure one, the optical thickness can be lower than 1. Furthermore, the optical thickness can be decreased if the radio emission is generated in the cool and dense plasma filament surrounded by hotter and thinner plasma. But the models differ in density scale heights and thus in distances between plasma emission levels. This difference is essential for the interpretation of high-frequency type III radio bursts.  相似文献   

10.
We calculate the reverse shock (RS) synchrotron emission in the optical and the radio wavelength bands from electron–positron pair-enriched gamma-ray burst ejecta with the goal of determining the pair content of gamma-ray bursts (GRBs) using early-time observations. We take into account an extensive number of physical effects that influence radiation from the RS-heated GRB ejecta. We find that optical/infrared flux depends very weakly on the number of pairs in the ejecta, and there is no unique signature of ejecta pair enrichment if observations are confined to a single wavelength band. It may be possible to determine if the number of pairs per proton in the ejecta is ≳100 by using observations in optical and radio bands; the ratio of flux in the optical and radio at the peak of each respective RS light curve is dependent on the number of pairs per proton. We also find that over a large parameter space, RS emission is expected to be very weak; GRB 990123 seems to have been an exceptional burst in that only a very small fraction of the parameter space produces optical flashes this bright. Also, it is often the case that the optical flux from the forward shock is brighter than the RS flux at deceleration. This could be another possible reason for the paucity of prompt optical flashes with a rapidly declining light curve at early times as was seen in GRBs 990123 and 021211. Some of these results are a generalization of similar results reported in Nakar & Piran.  相似文献   

11.
Currently there are four operating near-UV imaging space telescopes, one of which is the Swift Ultra-Violet/Optical Telescope (UVOT). Although the UVOT was primarily built for observations of γ-ray bursts, it has become a powerful instrument for studying other types of UV and optical astronomical phenomena. Here we discuss the properties of the UVOT, summarize some of the science undertaken with the UVOT, and present other possible science goals for the UVOT that have not yet been pursued. We also discuss some lessons learned that apply to future UV telescopes.  相似文献   

12.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

13.
We report on VLA observations of HST-1 in M87 at 8 GHz from 2003–2007, during which a long major outburst occurs from radio to X-ray wave bands. At the VLA resolution, the flux density of HST-1 rises rapidly from 2003, peaks at the end of 2004, and then falls slowly in subsequent stages, which is similar to that in optical and X-ray wave bands. It appears that HST-1 moves with an apparent speed of 1.23c±0.91c, and the fractional polarization keeps rising through the whole major outburst. The persistent increase in polarization level may mainly be attributed to the formation of a couple of new ‘subcomponents’ of relatively high degree of polarization within HST-1, and the weakening depolarization due to Faraday rotation and/or opacity through the whole major outburst.  相似文献   

14.
An analysis of the available results of direct angular diameter measurements of the carbon star Y Tau in different spectral bands of the optical and near-IR spectral ranges is carried out. It is shown that the available data allow to suggest the presence of periodic or quasi-periodic pulsations of the star with a period close to the possible period of its photometric variability in the corresponding time interval of observations. If the pulsations really take place, then their nature may be such that the star’s luminosity increases with decreasing diameter. At the same time, another interpretation of themeasurement results is possible, where the values of the star’s angular diameter d obtained from the observations in the red part of the optical spectral range correspond to the star’s photosphere, whereas the values d obtained from observations in the near-IR range correspond to the optically thick radiating layers of its extended atmosphere or envelope.  相似文献   

15.
The Herschel SPIRE Fourier transform spectrometer (FTS) performs spectral imaging in the 447–1546 GHz band. It can observe in three spatial sampling modes: sparse mode, with a single pointing on sky, or intermediate or full modes with 1 and 1/2 beam spacing, respectively. In this paper, we investigate the uncertainty and repeatability for fully sampled FTS mapping observations. The repeatability is characterised using nine observations of the Orion Bar. Metrics are derived based on the ratio of the measured intensity in each observation compared to that in the combined spectral cube from all observations. The mean relative deviation is determined to be within 2 %, and the pixel-by-pixel scatter is ~ 7 %. The scatter increases towards the edges of the maps. The uncertainty in the frequency scale is also studied, and the spread in the line centre velocity across the maps is found to be ~ 15 km s ? 1. Other causes of uncertainty are also discussed including the effect of pointing and the additive uncertainty in the continuum.  相似文献   

16.
Spectroscopic remote sensing in the infrared and (sub)millimeter range is a powerful technique that is well suited for detecting minor species in planetary atmospheres (Planet Space Sci. 43(1995) 1485). Yet, only a handful of molecules in the Mars atmosphere (CO2, CO and H2O along with their isotopic species, O3, and more recently H2O2 and CH4) have been detected so far by this method. New high performance spectroscopic instruments will become available in the future in the infrared and (sub)millimeter range, for observations from the ground (infrared spectrometers on 8 m class telescopes, large millimeter and submillimeter interferometers) and from space, in particular the Planetary Fourier Spectrometer (PFS) aboard Mars Express (MEx), and the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory (HSO). In this paper we will present results of a study that determines detectability of minor species in the atmosphere of Mars, taking into account the expected performance of the above spectroscopic instruments. In the near future, a new determination of the D/H value is expected with the PFS, especially during times of maximum H2O abundance in the martian atmosphere. PFS is also expected to place constraints on the abundance of several minor species (H2O2,CH4,CH2O, SO2, H2S, OCS, HCl) above any local outgassing sources, the hot spots. It will be possible to obtain complementary information on some minor species (O3,H2O2, CH4) from ground-based infrared spectrometers on large telescopes. In the more distant future, HIFI will be ideally suited for measuring the isotopic ratios with unprecedented accuracy. Moreover, it should be able to observe O2, which has not yet been detected spectroscopically in the IR/submm range, as well as H2O2. HIFI should also provide upper limits for several species that have not yet been detected (HCl, NH3, PH3) in the atmosphere of Mars. Some species (SO, SO2,H2S, OCS, CH2O) that may be observable from the ground could be searched for with present single-dish antennae and arrays, and in the future with the Atacama Large Millimeter Array (ALMA) submillimeter interferometer.  相似文献   

17.
We present our calculations of the spectrum and oscillator strengths for the 4f7?(4f65d+4f66s) Eu III transitions. The calculations were performed with Cowan's RCN-RCG-RCE codes in the single-configuration approximation. A comparison of computed level lifetimes with experimental data for three levels shows that the scale of theoretical oscillator strengths could be overestimated by a factor of 3. The theoretical oscillator strengths of red Eu III lines are two orders of magnitude smaller than their astrophysical oscillator strengths derived by Ryabchikova et al. (1999) from the condition of ionization balance. The new oscillator strengths were tested by analyzing the Eu abundance using Eu II and Eu III lines in the spectra of hot peculiar stars (α2 CVn is a typical representative) and cool peculiar stars (β CrB is a typical representative). First, we computed non-LTE corrections, which proved to be significant for α2 CVn. We also analyzed the Eu II λ6645.11-Å line as well as ultraviolet and optical Eu III lines. We show that the new oscillator strengths together with the non-LTE corrections allow the contradiction between the Eu abundances derived by Ryabchikova et al. (1999) separately from optical Eu II and Eu III lines in α2 CVn to be resolved. The new Eu abundance, log(Eu/N tot)=?6.5, also faithfully describes the blended near-ultraviolet resonance Eu III lines. Using the new Eu III oscillator strengths to analyze the spectrum of the cool Ap star β CrB, we found a significant deviation of the n(Eu II)/n(Eu III) ratio from its equilibrium value. For a chemically homogeneous model atmosphere, to obtain the observed intensity of the Eu III λ 6666.35-Å line, the Eu abundance must be increased by two orders of magnitude compared to that required to describe the Eu II λ 6645.11-Å line. We discuss the possibility of explaining the observed intensities of Eu II and Eu III lines in the spectrum of β CrB by the presence of an inhomogeneous atmosphere with Eu concentrated in its uppermost layers. In such atmospheres, the role of non-LTE effects becomes dominant.  相似文献   

18.
We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region NOAA 11242 using scanning spectroscopy in Hα and Ca?ii 8542 Å with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler-velocity maps. Temporal-sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.  相似文献   

19.
M.V. Kurgansky 《Icarus》2012,219(2):556-560
Theoretical predictions with regard to dust devil (apparent) angular size–frequency distribution are made and critically compared with Mars Exploration Rover (MER) Spirit optical observations. For an idealized horizontal viewing geometry one should expect that the number of dust devils having the apparent angular diameter greater than a given angle α is inversely proportional to α squared. The actual dependency for Spirit dust devils is in between the inverse-squared and simple inverse laws, and close to the latter one for small and moderate angles α. It is emphasized that such a comparison can be considered as a benchmark for completeness and adequateness of dust-devil optical observations and correctness of competing analytical formulations for dust devil size–frequency distribution.  相似文献   

20.
We present a flux calibration scheme for the PACS chopped point-source photometry observing mode based on the photometry of five stellar standard sources. This mode was used for science observations only early in the mission. Later, it was only used for pointing and flux calibration measurements. Its calibration turns this type of observation into fully validated data products in the Herschel Science Archive. Systematic differences in calibration with regard to the principal photometer observation mode, the scan map, are derived and amount to 5 ? 6 %. An empirical method to calibrate out an apparent response drift during the first 300 Operational Days is presented. The relative photometric calibration accuracy (repeatability) is as good as 1 % in the blue and green band and up to 5 % in the red band. Like for the scan map mode, inconsistencies among the stellar calibration models become visible and amount to 2 % for the five standard stars used. The absolute calibration accuracy is therefore mainly limited by the model uncertainty, which is 5 % for all three bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号