首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A transient climate scenario experiment of the regional climate model COSMO-CLM is analyzed to assess the elevation dependency of 21st century European climate change. A focus is put on near-surface conditions. Model evaluation reveals that COSMO-CLM is able to approximately reproduce the observed altitudinal variation of 2 m temperature and precipitation in most regions and most seasons. The analysis of climate change signals suggests that 21st century climate change might considerably depend on elevation. Over most parts of Europe and in most seasons, near-surface warming significantly increases with elevation. This is consistent with the simulated changes of the free-tropospheric air temperature, but can only be fully explained by taking into account regional-scale processes involving the land surface. In winter and spring, the anomalous high-elevation warming is typically connected to a decrease in the number of snow days and the snow-albedo feedback. Further factors are changes in cloud cover and soil moisture and the proximity of low-elevation regions to the sea. The amplified warming at high elevations becomes apparent during the first half of the 21st century and results in a general decrease of near-surface lapse rates. It does not imply an early detection potential of large-scale temperature changes. For precipitation, only few consistent signals arise. In many regions precipitation changes show a pronounced elevation dependency but the details strongly depend on the season and the region under consideration. There is a tendency towards a larger relative decrease of summer precipitation at low elevations, but there are exceptions to this as well.  相似文献   

2.
Available observations suggest that some mountain regions are experiencing seasonal warming rates that are greater than the global land average. There is also evidence from observational and modeling studies for an elevation-dependent climate response within some mountain regions. Our understanding of climate change in mountains, however, remains challenging owing to inadequacies in observations and models. In fact, it is still uncertain whether mountainous regions generally are warming at a different rate than the rest of the global land surface, or whether elevation-based sensitivities in warming rates are prevalent within mountains. We review studies of four high mountain regions – the Swiss Alps, the Colorado Rocky Mountains, the Tibetan Plateau/Himalayas, and the Tropical Andes – to examine questions related to the sensitivity of climate change to surface elevation. We explore processes that could lead to enhanced warming within mountain regions and possible mechanisms that can produce altitudinal gradients in warming rates on different time scales. A conclusive understanding of these responses will continue to elude us in the absence of a more comprehensive network of climate monitoring in mountains.  相似文献   

3.
青藏高原增暖海拔依赖性研究进展   总被引:2,自引:0,他引:2  
青藏高原平均海拔4000m以上,由于复杂的地形及其特殊的地理位置,对全球气候变化影响重大,已成为研究的热点和关键区.古气候代用指标、常规气象台站以及卫星反演资料表明,青藏高原变暖显著,最低气温升温趋势高于最高气温,冬季增温幅度最大,且存在海拔依赖性,即升温幅度随海拔高度上升而增大.在此基础上,不同大气环流模式试验以及未来气候变化情景下高原气候变化模拟结果也表现出明显的海拔依赖性.而模式资料分析表明,海拔依赖性的存在可能与高海拔地区冰雪反馈和云量有关.但由于青藏高原5000m以上常规观测台站稀少,难以获得连续的气象观测资料,而当前气候系统模式分辨率仍较低,缺乏对复杂地形描述和模拟,这使得海拔依赖性的研究存在一定的争议.因此,当前海拔依赖性研究还存在两个问题:第一,如何获取更高海拔地区的观测和模式资料,运用尽可能多的观测资料来检验海拔依赖性存在与否的问题,如6000m以上站点和格点;第二,如果这种依赖性确实存在,如何从物理机制上解释高原气候变暖的海拔依赖性.  相似文献   

4.
California’s hydropower system is composed of high and low elevation power plants. There are more than 150 high-elevation power plants, at elevations above 1,000 feet (300 m). Most have modest reservoir storage capacities, but supply roughly 74% of California’s in-state hydropower. The expected shift of runoff peak from spring to winter due to climate warming, resulting in snowpack reduction and increased snowmelt, might have important effects on power generation and revenues in California. The large storage capacities at low-elevation power plants provide flexibility to operations of these units under climate warming. However, with climate warming, the adaptability of the high-elevation hydropower system is in question as this system was designed to take advantage of snowpack, a natural reservoir. With so many high-elevation hydropower plants in California, estimation of climate warming effects by conventional simulation or optimization methods would be tedious and expensive. An Energy-Based Hydropower Optimization Model (EBHOM) was developed to facilitate practical climate change and other low-resolution system-wide hydropower studies, based on the historical generation data of 137 high-elevation hydropower plants for which the data were complete for 14 years. Employing recent historical hourly energy prices, the model was used to explore energy generation in California for three climate warming scenarios (dry warming, wet warming, and warming-only) over 14 years, representing a range of hydrologic conditions. The system is sensitive to the quantity and timing of inflows. While dry warming and warming-only climate changes reduce average hydropower revenues, wet warming could increase revenue. Re-operation of available storage and generation capacities help compensate for snowpack losses to some extent. Storage capacity expansion and to a lesser extent generation capacity expansion both increase revenues, although such expansions might not be cost-effective.  相似文献   

5.
Observations of rapid retreat of tropical mountain glaciers over the past two decades seem superficially at odds with observations of little or no warming of the tropical lower troposphere during this period. To better understand the nature of temperature and atmospheric freezing level variability in mountain regions, on seasonal to multidecadal time scales, this paper examines long-term surface and upper-air temperature observations from a global network of 26 pairs of radiosonde stations. Temperature data from high and low elevation stations are compared at four levels: the surface, the elevation of the mountain station surface, 1 km above the mountain station, and 2 km above the mountain station. Climatological temperature differences between mountain and low elevation sites show diurnal and seasonal structure, as well as latitudinal and elevational differences. Atmospheric freezing-level heights tend to decrease with increasing latitude, although maximum heights are found well north of the equator, over the Tibetan Plateau. Correlations of interannual anomalies of temperature between paired high and low elevation sites are relatively high at 1 or 2 km above the mountain station. But at the elevation of the station, or at the two surface elevations, correlations are lower, indicating decoupling of the boundary layer air from the free troposphere.Trends in temperature and freezing-level height are generally upward, both during 1979–2000 and during longer periods extending back to the late 1950s. However, some negative trends were found at extratropical locations. In many cases, statistically significant differences were found in trends at paired high and low elevation stations, with tropical pairs revealing more warming (and greater increases in freezing-level height) at mountain stations than at low elevations. This result is consistent with both the observed retreat of tropical glaciers and the minimal change in tropics-wide tropospheric temperatures over the past two decades.Overall, the analysis suggests that, on diurnal, seasonal, interannual, and multidecadal time scales, temperature variations at mountain locations differ significantly from those at relatively nearby (a few hundred kilometers) low elevation stations. These differences are greatest at the two surface levels, but can persist up to 2 km above the mountain site. Therefore, to determine the nature of climate variability at high elevation sites requires local observations, since large-scale patterns derived from low elevation observations may not be representative of the mountain regions. Conversely, temperature change in mountain regions should not be viewed as necessarily representative of global surface or tropospheric trends.  相似文献   

6.
基于青藏高原地区高质量、均一化的气象站点观测资料,研究1981—2010年青藏高原地区气温变化趋势特征。结果表明:1981—2010年青藏高原地区整体呈升温趋势,平均升温率为0.40℃/10a,冬春季升温率大于夏秋季节,以三江源区、西藏中西部和青海北部升温趋势最为显著。青藏高原地区年和冬、春、秋三季的升温率随海拔高度的升高而增大,海拔每升高1000 m,站点年平均气温倾向率增加0.1℃/10a,冬季更为显著。青藏高原地区夏季气温倾向率的空间分布具有显著的经向差异,纬度每增加10°,气温倾向率增加0.33℃/10a。  相似文献   

7.
The paper provides a brief overview of recent advances in selected areas of mountain climate research. It addresses the contrasting vertical precipitation gradients in the Alps and in central Asia, snow line in the Alps, orographic precipitation in North America, the Mesoscale Alpine Programme wind studies, automatic weather stations in mountains, satellite remote sensing of glacier changes, and temperature change at high elevations. The evidence for altitudinal differences in the temperature response to recent warming is discussed.  相似文献   

8.
青藏高原积雪日数的气温敏感度分析   总被引:5,自引:0,他引:5       下载免费PDF全文
根据青藏高原气象台站观测积雪日数和均一化气温数据,对高原1951—2004年积雪日数对气温的敏感度进行了量化分析。研究表明,无论是极值敏感度还是当前气候下的敏感度,空间上都呈现出高原四周积雪较中部对气温的敏感程度高的情况。各台站积雪日数对气温最敏感时的临界气温与海拔有着极好的反相关关系,而极值敏感度与海拔虽然也有一定的反相关,但相关程度远不如前者高。在当前气候状态下,有相当一部分台站的平均气温还未达到临界值,这些台站在秋、冬、春、夏季分别占总台站数的36%、39%、47%和11%。未来气候继续变暖背景下,这部分台站积雪日数对气温的敏感度会进一步加大,即积雪对气温的升高会更加敏感。  相似文献   

9.
Summary A series of anomalously cold and warm winters which occurred in Switzerland during the 15-year period from 1979 to 1993 has been analyzed in detail in terms of temperature minima. The warm winters between 1988–1992 were particularly marked in the Alps, where lack of snow had severe consequences for the tourist-based economies of mountain communities. The investigations presented here focus primarily on minimum temperature records for up to 88 climatological observing sites distributed over Switzerland.Analyses of the departures of temperature minima from the 15-year means in warm and cold winters has shown that there is a very significant altitudinal dependency of the anomalies except at low elevations which are subject to fog or stratus conditions; the stratus tends to decouple the underlying stations from processes occurring at higher altitudes. It is also shown that there is a switch in the gradient of the temperature anomaly with height from cold to warm winters. For warm winters, the higher the elevation, the stronger the positive anomaly; the reverse is true for cold winters. The statistics for the 88 observational stations provide a measure of the damping of the climate signal as an inverse function of height. The altitudinal dependency of temperature departures from the mean are the most important feature, followed by latitudinal effects (north and south of the Alps); continentality is not seen to be a major factor in determining the geographical distribution of temperature anomalies at this scale.The present investigation also emphasizes the fact that high elevation records can more readily identify significant interannual climatic fluctuations than at lower-elevation sites. This is also likely to be the case for longer-term climate change, where possibe greenhouse-gas warming would presumably be detected with more clarity at higher elevations. This type of study can help orientate future high-resolution climate model studies of climate change and in particular the assessment of model capability in reproducing a range of possible temperature anomalies and their altitudinal dependency.With 12 Figures  相似文献   

10.
Yan  Yuping  You  Qinglong  Wu  Fangying  Pepin  Nick  Kang  Shichang 《Climate Dynamics》2020,55(9-10):2405-2419

The Tibetan Plateau (TP), also called the “Third pole”, is sensitive to climate change due to extensive areas at high elevation presently dominated by snow and ice. In this study, observed surface temperature trends at 150 stations over the TP during 1979–2018 are analyzed and compared with surface temperatures from multiple reanalyses (NCEP1, NCEP2, ERA-Interim, MERRA, JRA55). Observed warming at the stations has a mean annual rate of 0.46 °C/decade during 1979–2018. Although all reanalyses underestimate observed temperatures (cold bias), most reproduce much of the inter-decadal variations of surface temperature shown in the observations. Absolute errors of mean surface temperature (reanalysis minus observation) are closely correlated with elevation errors, suggesting that parts of the cold bias can be interpreted by elevation errors of reanalysis. After elevation-temperature correction, about half of the cold bias is typically eliminated, more for both ERA-Interim and JRA55. Compared with the observations, corrected NCEP2 surface temperatures still have larger cold biases, and fail to capture the overall warming over the TP. Since the elevation-temperature correction fails to improve trend magnitudes even when a significant proportion of the bias has been removed, this suggests that a more sophisticated modeling of the lapse rate in each reanalysis is required to realistically model warming trends across complex topography.

  相似文献   

11.
利用青藏高原气象台站逐日观测资料,采用候雨量稳定通过临界阈值的方法对高原雨季起讫期进行客观定量划分,在此基础上,进一步分析增暖背景下雨季起讫期和雨季降水演变特征,并对比增暖前后高原雨季起讫期及不同等级降水的响应特征.结果表明:青藏高原雨季平均开始期为5月第3候、结束期为9月第6候、共持续28候;青藏高原雨季降水集中期为...  相似文献   

12.
The Tibetan Plateau has experienced rapid warming like most other alpine regions. Regional assessments show rates of warming comparable with the arctic region and decreasing Asian summer monsoons. We used meteorological station daily precipitation and daily maximum and minimum temperature data from 80 stations in the eastern Tibetan Plateau of southwest China to calculate local variation in the rates and seasonality of change over the last half century (1960–2008). Daily low temperatures during the growing season have increased greatly over the last 24 years (1984–2008). In sites of markedly increased warming (e.g., Deqin, Yunnan and Mangya, Qinghai), daily and growing season daily high temperatures have increased at a rate above 5 °C/100 years. In Deqin, precipitation prior to the 1980s fell as snow whereas in recent decades it has shifted to rain during March and April. These shifts to early spring rains are likely to affect plant communities. Animals like yaks adapted to cold climates are also expected to show impacts with these rising temperatures. This region deserves further investigation to determine how these shifts in climate are affecting local biodiversity and livelihoods.  相似文献   

13.
色季拉山气温和降水垂直梯度变化规律的研究能更好的了解色季拉山动植物分布随高度变化的生理生态特点,也为未来此区域流域水文模拟提供可靠的数据支持.根据色季拉山11个气象站2013-2018年逐日的平均气温和降水量(4-10月)数据,分析了色季拉山及其西坡和东坡的气温和降水量与海拔的关系.结果表明:(1)色季拉山、西坡和东坡...  相似文献   

14.
作为全球能量水分循环的关键区域,青藏高原(下称高原)气候变化对高原及周边地区气候与环境变化具有重要影响.本文从高原表面增暖、辐射变化、降水的多尺度变率、表面风速及环境变化方面回顾了高原近60年来气候变化及其环境效应与物理机制的研究进展,并基于再分析和台站观测资料讨论了近10余年来高原表面温度和风速变化的特征及原因.最后...  相似文献   

15.
Daily snow data for 2300 climate stations covering the period from 1951 through 1980 have been used to monitor and diagnose secular variations,year-to-year fluctuations,and the spatial characteristics of snow variation trends in China.An examination of time series reveals that there is a strong teleconnction to ENSO,to major volcanic eruptions,as well as to the CO2-induced warming.The country-wide snow mass variations are positively correlated with global mean temperature,increasing during the current warming period and decreasing during the recent cooling period prior to the mid 1960s.A synchronous relationship exists between El Nino/Southern Oscillation and snowy winter in China.The year-to-year snow fluctuations seem to be generally out of phase with volcanic activity.The anomaly map shows that snow mass increased in high altitudes and moist regions,while it decreased in arid lowland and the southern boundary zone during the warming period.The potential CO2-induced changes in snow mass will further aggravate the regional differentiation between high mountains and lowlands,between moist and arid regions.The number of snow cover days will decrease in the northern lowlands,and snowfall will increase in the Qinghai-Xizang Plateau,high mountains,and the lower reaches of the Changjiang(Yangtze) River.  相似文献   

16.
利用1971-2016年青藏高原81个气象站逐月积雪日数和45个测站第一冻结层下界观测资料,分析了青藏高原积雪冻土的时空变化特征及其与高原植被指数(NDVI)的关系,探讨了积雪冻土下垫面变化对高原植被及沙漠化的可能影响。结果表明:1)青藏高原积雪日数分布极不均匀,巴颜喀拉山和唐古拉山为高原积雪日数的大值区,且年际变率较大。2)青藏高原积雪日数总体上呈现减少趋势,平均以3.5 d/(10 a)的速率减少,且在1998年前后发生突变,减少速率进一步加快,达到5.1 d/(10 a)。3)青藏高原第一冻结层下界呈上升趋势,达到-3.7 cm/(10 a),与青藏高原增暖紧密相关。4)青藏高原NDVI呈缓慢增加趋势,与高原气温、降水的增加趋势相一致,积雪冻土的变化对不同区域植被NDVI的影响有显著差异。在气候变暖背景下,形成的暖湿环境促进积雪消融、冻土下界提升,使土壤浅层含水量增加,有利于植被恢复和生长,其结果对高原土地沙漠化防治有一定参考作用。  相似文献   

17.
1958—1986年中国对流层和平流层低层的温度变化   总被引:1,自引:0,他引:1  
白肇烨  徐健青 《气象学报》1991,49(3):364-368
北半球地面平均温度变化的总趋势是,1940年左右增暖达到了峰值,继之变冷直到60年代中期,此后从1970年左右又转入了一个新的增暖期。50年代至70年代北半球自由大气,特别是对流层下半部,温度变化趋势大体与地面温度变化趋势一致。由于一些作者使用的是格点资料,对精度有一定的影响,因此各个结果之间有相当差异。J.K.Angell和J.Korshover 1975年以来直接使用探空站资料研究全球各纬带自由大气的温度变化,其近期的研究结果指出,1958年开始的地面和对流层的十年降温已为此后的升温所抵消,1981年的温度已超过了1958—1959年;1960—1985年北半球对流层和地面温度变化的总趋势是增暖的,对流层顶和平流层低层则是变冷的。中国区域内自由大气和地面温度变化如何?本文在这方面作了探讨,发现了一些有意义的结果。  相似文献   

18.
Daily snow data for 2300 climate stations covering the period from 1951 through 1980 have been used to monitorand diagnose secular variations,year-to-year fluctuations,and the spatial characteristics of snow variation trends inChina.An examination of time series reveals that there is a strong teleconnction to ENSO,to major volcanic eruptions,as well as to the CO_2-induced warming.The country-wide snow mass variations are positively correlated with globalmean temperature,increasing during the current warming period and decreasing during the recent cooling period priorto the mid 1960s.A synchronous relationship exists between El Nino/Southern Oscillation and snowy winter in China.The year-to-year snow fluctuations seem to be generally out of phase with volcanic activity.The anomaly map showsthat snow mass increased in high altitudes and moist regions,while it decreased in arid lowland and the southern bounda-ry zone during the warming period.The potential CO_2-induced changes in snow mass will further aggravate the regionaldifferentiation between high mountains and lowlands,between moist and arid regions.The number of snow cover dayswill decrease in the northern lowlands,and snowfall will increase in the Qinghai-Xizang Plateau,high mountains,andthe lower reaches of the Changjiang(Yangtze)River.  相似文献   

19.
J. R. Flenley 《Climatic change》1998,39(2-3):177-197
Vegetational history can help us to predict future environments by providing data for testing AGCMs, for indicating the vegetational response to rapid warming and changing CO2 concentrations, and for mathematical modelling of vegetation. Most of the data are palynological, and there are well over 100 pollen diagrams from tropical regions. Maps are presented showing summarized pollen diagrams from the lowlands of South-East Asia and the West Pacific, Tropical Latin America and Tropical Africa. In all these regions there is some evidence suggesting that at the LGM lowland forests were somewhat restricted in area and included montane elements. This is consistent with cooler and drier climate at the LGM. From the montane and lowland areas of these three regions, the pollen evidence is summarized in altitudinal diagrams. These suggest considerable depression of altitudinal zones at the LGM, suggesting temperatures c. 5–10°C cooler than now. These results conflict with earlier oxygen isotope data from marine foraminifera, but do not conflict with more recent oxygen isotope measurements from tropical corals. It is also suggested that altitudinal movements may be partly controlled by CO2 concentration and ultraviolet light.  相似文献   

20.
近30a青藏高原气候与冰川变化中的两种特殊现象   总被引:21,自引:1,他引:20       下载免费PDF全文
近30 a全球强烈变暖,水循环加快,冰川也加剧退缩。青藏高原以其特殊的地理位置与下垫面,既对全球变暖有正常的反应,也出现了异常特殊现象。这种特殊现象已发现两处:1) 青藏高原北部偏西冰芯记录降温0.6℃,相应的冰川退缩微弱,融水径流降低;2) 青藏高原东南部以岗日嘎布山区为代表,出现较多的冰川前进,可能指示降水量有较大的增加。上述事实指示气候变化与冰川响应的复杂性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号