首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the system of field-aligned currents (FACs) and closing ionospheric Pedersen currents is considered with the use of original processing methods and the data from four substorms of different types. The total current system comprises of two parts. One is the well-known substorm current wedge (SCW) system, in which the zonal (westward ) current closes FACs in the R1 zone (region). The component 2 consists of two pairs of meridional currents flowing equatorward and poleward in the R1 region and creating regions R0 and R2 (according to the classification of Iijima and Potemra). It is shown that the total FAC of the disturbed magnetosphere–ionosphere system is dominated by the contribution of component 2, which contradicts the original version of the SCW model but is consistent with new data. The quantitative characteristics of the dawn–dusk asymmetry are determined for the FAC distribution in the ionosphere for each substorm. It is shown that the ratio of the average intensities of FACs in the regions R0 and R2 was IR0/IR2 ≥ 0.4, which contradicts the popular opinion that there are no FACs in the polar cap. In addition, a relatively rare event of the simultaneous start of the substorm explosive phase and the SSC caused by the dynamic impact of the solar wind when the polar cap expands (rather than compresses as usual) is considered.  相似文献   

2.
{1} The first phase of the superstorm on April 6, 2000 was studied based on the analogy between systems of magnetospheric currents and wire electric currents. The conventional dataset supplemented with maps of ionospheric equivalent currents (ECs) and field-aligned currents (FACs) was also used. The application of this analogy made it possible to introduce spatial R.N inhomogeneities into FAC distributions in the two-dimensional ionosphere and three types of meridional current systems, MCS-0, MCS-1, and MCS-2, providing electric coupling of three Iijima and Potemra FAC Regions. This basis was used to describe the formation and observed dynamics of ionospheric auroral electrojets and three-dimensional current systems in a disturbed magnetosphere-ionosphere system. The results the modify known paradigms of the substorm current wedge (SCW). A new important fact was noted: simultaneously with the beginning of the disturbance expansion phase due to the stepwise growth in the dynamic pressure of the solar wind (SW), the stepwise growth in the area of polar cap and in the electromagnetic energy flux coming to the magnetosphere from the SW were observed.  相似文献   

3.
The simplest theory of electric circuits is applied to analysis of the observed large-scale electric field and currents in a disturbed magnetosphere-ionosphere system. Maps of distribution of field-aligned currents (FACs) obtained from ground-based magnetic measurements using the original magnetogram inversion method (MIT) and measurements by satellites were used. A method for circuit determination according to the data of such maps based on the detection of spatial R.N inhomogeneities in each of three Iijima and Potemra FAC zones is proposed. The results of the new method are used to describe some electric field and current generators not known before, new types of current systems in tail lobes and plasma sheet, and the formation and dynamics of new types of three-dimensional systems with auroral electrojets and meridional ionospheric Pedersen current, which have not been paid due attention in the literature.  相似文献   

4.
The regular appearance of the chain of oppositely directed field-aligned current (FAC) pairs near the noon-midnight meridian during three considered substorms has been described. The FAC pairs (FACs flowing into the ionosphere in the morning and flowing out of this region in the evening and vice versa) are observed in each of three Iijima and Potemra zones. The FAC direction in the fixed LT sector periodically varies along the chain. The scenario, according to which each FAC pair (seven pairs) is identified with a hump or trough of one of the waves propagating from the Earth and toward the Earth in different magnetospheric domains, has been described. The estimated wave velocities differ from ∼100 to >1000 km/s depending on the propagation region but everywhere agree with the corresponding velocities of magnetosound waves (MSWs). The hypothesis is proposed, according to which these MSWs are excited by plasma ejection during current disruption and reconnection near the dayside magnetopause and in the near/middle regions of the nightside tail.  相似文献   

5.
本文利用SWARM A和C双星高精度的矢量磁场数据研究了不同季节高纬地区场向电流(FACs)随地磁经度和地方时的变化情况.研究发现:在南北半球,FACs存在明显的经度变化,南半球FACs的变化强度大约是北半球的1.2~3.2倍.利用潮汐谱分析法我们发现FACs中占主导的非迁移潮汐分量为DW2和D0.在春秋和夏季半球,DW2波更为明显.D0波可用太阳光照的经度变化来解释,向阳侧靠近磁极的经度带比远离磁极的经度带有更强的太阳光照射.DW2波则与地磁场强度和地磁倾角等因素有关.全球电离层与热层模型计算的FACs中D0波占主导,且中性风和对流电场对D0波的贡献几乎相当.  相似文献   

6.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   

7.
The maps of the field-aligned current (FAC) density distribution in the ionosphere obtained by the TIM-2 magnetogram inversion technique are used to investigate the August 27, 2001 substorm. The open magnetic flux Ψ and intensity J of the substorm current wedge (SCW) have been determined with a step of 1–5 min. The substorm onsets are divided into two types, PSR (plasma sheet reconnection) and TLR (tail lobe reconnection). The fast expansion tailward of the PSR region is described as the transition from PSR to PSR+TLR. Assuming that the SCW FACs flow down into the ionosphere from the edges of the disruption region of the cross-tail dawn-dusk current, several parameters of the disruption region have been estimated. The disrupted magnetic field has been found to be ∼5% of the undisrupted one for PSR and ∼95% for PSR+TLR. The disturbance power Q for PSR is an order of magnitude lower than that for PSR+TLR. The abrupt growth of Q during the transition from PSR to PSR+TLR is observed over the entire SCW area from its near-Earth part to the midtail and distant tail.  相似文献   

8.
We present a technique for determination of the position and extent of the current systems present during substorm breakup. The parameters of a three-dimensional model of the currents are determined by fitting the model to data from the SAMNET magnetometer array, a midlatitude array of seven stations. The model used is a fully 3D current wedge aligned along dipolar field lines, the parameters being the meridians of upward and downward field-aligned currents (FACs), the latitude of the auroral electrojet and the magnitude of current growth over the observation interval. The method is novel in that the three geometrical parameters are first determined with the fourth arrived at via a secondary process. It has been applied to a number of events and appears to make estimates of the longitudes of the FACs consistent with the predictions of previous methods. Since the method employs a fully 3D model of the substorm current wedge as opposed to an idealised 2D model, it is reasonable to place more reliance on the results so obtained. Moreover, the method also has the additional benefit of a prediction of the latitude of the substorm electrojet and the nature of the current growth through the wedge at substorm onset.  相似文献   

9.
We consider a number of new approaches that arise when the topology of currents in the high-latitude magnetosphere is investigated. We note that the high correlation between magnetospheric processes and solar wind parameters is a well-known feature of the magnetospheric dynamics. The proposed explanations of the observed dependences run into difficulties related to the high level of observed turbulence in the magnetosheath and inside the magnetosphere. The topology of the high-latitude magnetosphere in the transition region from dipole magnetic field lines to those extending into the tail is also poorly known. We consider the topology of transverse magnetospheric currents using satellite measurements of the plasma pressure distribution. The currents of the nearest plasma sheet are shown to be closed inside the magnetosphere. The generation of field-aligned currents in Iijima and Potemra region currents 1 and large-scale magnetospheric convection are discussed.  相似文献   

10.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

11.
行星际磁场By分量对地球磁层顶场向电流调制   总被引:5,自引:2,他引:5       下载免费PDF全文
采用三维可压缩MHD数值模拟研究了行星际磁场By分量的变化对磁层顶重联区场向电流大小和分布的影响. 行星际磁场通过模拟区x=-Lx处左边界条件By来影响重联过程,从而改变重联区的场向电流. 研究结果表明边界条件By的突然改变,能使重联区场向电流迅速增加,甚至达到增大一个量级的水平.By本身的存在(即不为零)也会使场向电流维持在一个较高的水平. 由于行星际磁场By分量不为零,而形成模拟区磁场By不对称分布,这种不对称分布是场向电流不对称分布产生的主要原因. 这些结果是与Orsted卫星最新观测结果和地 面观测结果相符合的,它表明行星际磁场By分量对地球空间场向电流有较大的调制作用.  相似文献   

12.
We have investigated ion outflows observed by the Akebono satellite and the EISCAT radar in the nightside auroral region on February 16, 1993. The Akebono satellite at about 7000 km altitude observed the region of suprathermal ion outflows and inverted-V type electron precipitation alternately with a horizontal separation of 70–150 km at the ionospheric level. These two regions corresponded to the upward and downward field-aligned current region, respectively, and intense ELF waves were observed in the ion outflow region. From the EISCAT VHF radar observation (Common Program 7 mode), it has been suggested that the ion outflow region and the enhanced electron temperature region were aligned along geomagnetic field lines with vertical and horizontal separations of 200–400 and 70–80 km, respectively and these two regions convected equatorward across the EISCAT radar at Tromsø site. Based on these results, we propose a model for this ion outflow as follows. In the nightside auroral region, downward FAC regions exist near the edge of the inverted-V type electron precipitation regions. ELF waves are excited probably by a plasma instability due to the upward thermal electron beam carrying the downward FACs, and these ELF waves cause transverse ion heating at the top of the ionosphere. The produced ion conics contribute significantly to ion outflow.  相似文献   

13.
In this work we examine simultaneous observations from the two geosynchronous satellites GOES-5 and GOES-6 located at 282°E and 265°E respectively, and from middle and low latitude ground observatories located within 250°E and 294°E geographic longitude, during isolated substorms of moderate activity. The spatial distribution of our observation points allows us to make a detailed study of the azimuthal expansion of the substorm current wedge. The data analysis shows evidence that the substorm initiation and development mechanism include the cross-tail current diversion/disruption, the substorm current wedge formation and the azimuthal expansion of the inner plasma sheet. The triggering mechanism is initially confined in a longitudinally narrow sector, estimated to be less than 15° and located very close to local midnight to the east or to the west. The current disruption region expands both eastward and westward in the magnetotail, so that the location of major field-aligned currents flowing into the ionosphere shifts successively eastward, and the location of the currents flowing out of the ionosphere shifts successively westward. Evidence was found that the perturbation travels toward the west with velocities greater than those expanding the wedge eastward. The drastic decrease of the velocity with the azimuthal distance from the location of the disturbance initiation, i.e., the onset sector, indicates that the energy release is a very localized phenomenon. Finally, the transient D perturbation observed by the geosynchronous satellites suggests that the field-aligned currents forming the wedge have a longitudunally limited extent.  相似文献   

14.
地球内磁层场向电流的统计特征   总被引:4,自引:2,他引:4       下载免费PDF全文
利用ISEE-1和ISEE-2飞船观测的磁场数据,分析了地球内磁层场向电流的统计特征,包括场向电流的空间(L值和地方时)分布;流进和流出电离层的场向电流随地方时的变化;场向电流发生率与地磁活动水平(以AL指数表征)、行星际磁场(IMF)Bz的关系,电流强度和密度随地磁活动水平的变化等.发现,场向电流大都发生在夜间,且集中在L为6-10区域内,场向电流发生率,强度和密度随地磁活动增强而增大,行星际磁场南向时的发生率远远高于北向时的发生率.这些结果表明,内磁层场向电流的产生是太阳风和磁层、电离层间电动耦合增加的结果.  相似文献   

15.
We describe, for the first time, the following peculiarities of a substorm in the polar ionosphere and magnetotail including its distant lobe: (1) coherent variations in mesoscale vortices and in field-aligned currents of the magnetospheric-ionospheric (M-I) system; (2) instability of short—circuiting of currents in ionospheric part of the M-I system; (3) coexistence of Y- and X-currents as necessary elements of the M-I system. These new elements for the substorm scenario are principally relevant to understanding of basic processes in the mid-/near tail.  相似文献   

16.
High-time resolution CUTLASS observations and ground-based magnetometers have been employed to study the occurrence of vortical flow structures propagating through the high-latitude ionosphere during magnetospheric substorms. Fast-moving flow vortices (800 m s–1) associated with Hall currents flowing around upward directed field-aligned currents are frequently observed propagating at high speed (1 km s–1) azimuthally away from the region of the ionosphere associated with the location of the substorm expansion phase onset. Furthermore, a statistical analysis drawn from over 1000 h of high-time resolution, nightside radar data has enabled the characterisation of the bulk properties of these vortical flow systems. Their occurrence with respect to substorm phase has been investigated and a possible generation mechanism has been suggested.  相似文献   

17.
We have used the global numerical model of the coupled ionosphere-thermosphere-protonosphere system to simulate the electric-field, ion- and electron-temperature and -concentration variations observed by EISCAT during the substorm event of 25 March 1987. In our previous studies we adopted the model input data for field-aligned currents and precipitating electron fluxes to obtain an agreement between observed and modelled ionospheric variations. Now, we have calculated the field-aligned currents needful to simulate the substrom variations of the electric field and other parameters observed by EISCAT. The calculations of the field-aligned currents have been performed by means of numerical integration of the time-dependent continuity equation for the cold mag-netospheric electrons. This equation was added to the system of the modelling equations including the equation for the electric-field potential to be solved jointly. In this case the inputs of the model are the spatial and time variations of the electric-field potential at the polar-cap boundaries and those of the cold magnetospheric electron concentration which have been adopted to obtain the agreement between the observed and modelled ionospheric variations for the substorm event of 25 March 1987. By this means it has been found that during the active phase of the substorm the current wedge is formed. It is connected with the region of the decreased cold magnetospheric electron content travelling westwards with a velocity of about 1 km s–1 at ionospheric levels.  相似文献   

18.
王慧  虞蕾  郑志超 《地球物理学报》2020,63(4):1294-1307
本文利用Swarm卫星2015—2016年高精度的磁场矢量数据,将晨昏地方时扇区高纬场向电流(Field-Aligned Currents,FACs)事件按极性和电流密度分为四类,并首次比较研究了四类FACs事件的时空分布特征及其影响因素,研究发现:极性正常事件(晨侧靠极侧电流元向下流入电离层,靠赤道侧电流元向上流出电离层,昏侧电流极性相反,即传统意义上的R1和R2FACs)发生率约为70%,其中R1FACs强于R2事件的发生率为R1FACs弱于R2的3~5倍;极性异常事件(与传统的R1和R2FACs流向相反,两片电流元定义为R1*和R2*FACs)发生率约占30%,其中R1*R2*的1.5~2.5倍.进一步分析发现极性正常事件主要发生在南向IMF Bz期间,与重联电场相关性较好,净电流密度随着重联电场和电离层电导率的增加而增加.其中R1R2*事件通常发生在IMF By<0期间,昏侧事件主要发生在IMF By>0期间,而R1*相似文献   

19.
The distribution of the electric potential, generated by the magnetospheric field-aligned currents flowing along the auroral oval and in the dayside cusp region at the upper atmospheric boundary in the polar ionosphere, is calculated. The obtained electric potential distributions are used to calculate the electric field strength near the Earth’s surface. The results of the model calculations are in good agreement with the electric field measurements at Vostok Antarctic station. It has been indicated that large-scale magnetospheric fieldaligned currents, related to IMF variations, can affect variations in the electric field strength in the polar regions via changes in the electric potential in the polar ionosphere, associated with these currents.  相似文献   

20.
The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号