首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The volume filling factor f v of the diffuse ionized gas in the bright emission ring of M 31 is derived from radio continuumobservations. The dependence of f v on the local mean electron density n e is a power law, f v(n e) = a n e -bwith a = 0.011± 0.003 and b = -1.2± 0.3, where n e is in cm-3. The same power law was recently found for the DIG in the solar neighbourhood from pulsar data.  相似文献   

2.
Weak dust acoustic (DA) solitary waves are investigated in a mixed nonthermal high energy-tail electron distribution, focusing on the influence of an interplay between nonthermality and superthermality on the DA soliton energy. It is shown that in a pure superthermal plasma (α=0), electron thermalization (κ→∞) leads to an increase of the energy carried by the soliton. Addition of minute quantities of nonthermal electrons drastically modifies the κ-dependence of the soliton energy E κ,α . The latter first decreases, then exhibits a local minimum before leveling at a constant value. The energy exchange between the non-Maxwellian electrons and the localized solitary structure depends drastically on the interplay between superthermality and nonthermality.  相似文献   

3.
The probability of the interstellar wind atoms (H and He) to survive ionization by solar wind electrons is presented. For the first time a dual temperature electron distribution is used to model the effects of “core” (10 eV) and “halo” (60 eV) solar electrons on the probabilities. Survival probability distributions as a function of helicocentric distance were calculated for variations in the electron temperature, solar radiation force, and the interstellar wind flow velocity. These probabilities are important in determining the radial density distributions of the interstellar atoms. It has been found that the interstellar wind has a distinctively higher probability of surviving “halo” rather than “core” electron ionization only at heliocentric distances, ρ, smaller than about 0.5 a.u. For distances larger than 0.5 a.u., the probabilities of surviving “halo” electrons are close to the probabilities of surviving “core” electrons. Also, the probabilities for both “core” and “halo” electrons are relatively insensitive to changes in u (interstellar wind velocity at infinity), μ (the solar ratio of radiation to gravitational force) and α (a model parameter for solar electron temperature) for ρ > 0.5. For distances smaller than that, the sensitivity increases significantly.  相似文献   

4.
Recent observations show the evidence of warm ionized interstellar medium (WIM) in some dwarf elliptical galaxies (dEs). The presence of WIM should be accounted for since diffuse plasma in dE is easy to escape owing to galactic wind during the star-burst epoch and ram pressure of intra-cluster medium. In this paper, we present a possible scenario of origin of dE with WIM. By estimating time-scale of ram pressure stripping of interstellar medium, we find dE with WIM is able to emerge when a field dwarf galaxy enters into a cluster of galaxies. Then, the author suggests that low surface brightness galaxies and blue compact dwarf galaxies can be a precursor of dE with WIM.  相似文献   

5.
The dissociative recombination coefficients α for capture of electrons by H3+ and H5+ ions have been determined as a function of electron temperature Te using a microwave afterglow-mass spectrometer apparatus. At ion and neutral temperatures Tu+ = Tn = 240 K, the coefficient α (H3+) is found to vary slowly with Te at first, decreasing from 1.6 × 10?7 cm3/s at Te = 240 K to 1.2 × 10?7 cm3/s at Te = 500 K, thereafter falling as Te?1 over the range 500 K ? Te, ? 3000 K. These results, which have a ± 20% uncertainty, agree satisfactorily over the common energy range (0.03–0.36 eV) with the recombination cross sections determined in merged beam measurements by Auerbach et al. At T+ = Tn = 128 K, the coefficient α(H5+) is found to be (1.8 ± 0.3) × 10?6 [Te(K)/300]?0.69 cm3/s over the range 128 K ? Te ? 3000 K, with a more rapid decrease, as Te?1, between 3000 K and 5500 K. The implications of these results for modelling planetary atmospheres and interstellar clouds are briefly touched on.  相似文献   

6.
We present here the optical CCD observations and long slit spectra of the galactic supernova remnants G59.5+0.1, G84.9+0.5 and G67.7+1.8, the first two being observed for the first time. The observations were carried out with the 1.5 m Russian-Turkish joint Telescope (RTT150) at TÜB?TAK National Observatory (TUG). The images were taken with Hα, [SII] and their continuum filters. After subtracting the continuum from Hα and [SII], [SII]/Hα ratio is obtained. The average ratio is found to be 0.41 for G59.5+0.1 and 0.44 for G84.9+0.5, in a very good agreement with the ratios obtained from the optical spectra, namely 0.46 and 0.40, respectively, indicating that these remnants are close to, or interacting with, HII regions. G59.5+0.1 and G84.9+0.5 remnants show diffuse-shell morphology while G67.7+1.8 shows arc-shell morphology. From the emission lines of the spectra, the electron density N e , pre-shock density n c , explosion energy E, interstellar extinction E(B-V), and neutral hydrogen column density N(HI) are calculated and shock velocity V s is estimated for these remnants.  相似文献   

7.
Suprathermal dust grains as suggested by Wickramasinghe produce electrons of energies not higher than 20 eV by Coulomb collisions with free electrons in an interstellar medium. These electrons are responsible for the production of singly ionized ions but not effective for that of highly ionized ones. This explains a general feature of the composition of atoms and ions as observed from the Copernicus satellite.  相似文献   

8.
This paper discusses the experimental results on electron precipitation in a diffuse aurora obtained by a sounding rocket launched from ANDENES (L ~ 6·2) on 3 November 1968. A considerable increase in the intensity of low energy electrons, Ee ? 5 keV, followed a large precipitation of more energetic electrons Ee ? 5 keV. From the observation of angular distributions and an estimate of the diffusion coefficient (Dα ? 10?3 (sec)?2), it is suggested that this higher energy precipitation is induced by gyroresonant interactions of magnetospheric electrons with radiation in the whistler mode. The lower energy precipitation separated in time and/or space, shows quasi-periodic modulations in the 5–15 sec range with periods close to the bounce period. It is suggested that this precipitation is the result of bounce-resonance interactions with electrostatic waves in the equatorial plane. Finally, from a comparison between the experimental energy spectra and plasma sheet spectra it can be concluded that these electrons are injected from the plasma sheet during a substorm and are then diffused and precipitated by energy dependent mechanisms.  相似文献   

9.
《New Astronomy》2003,8(5):427-437
The 2D Hβ spectral data of the post-flare loop system (PFLs) of August 17, 1989 are obtained and analyzed quantitatively for three different times. Three physical quantities (i.e., the column number density of hydrogen atoms at the second level along the line-of-sight direction N2, the excitation temperature Tex and micro-turbulence velocity Vt) and their 2D fields are derived during the three times. The time variations of the 2D field are given for the three quantities more than 1 h after the maximum of the Hα flare. Our analyses show that the average values of N2 and Vt decrease with time, while Tex is nearly unchanged except for the top part of the PFLs where it is increasing slightly with time. A new evolution property is found in which the regions with the maxima of Tex and N2 move from the middle of the southern leg towards the top part of the PFLs, while the position of Vt maximum shifts from the top part towards the northern leg of the system. This scenario may be a result of successive formation of new loops at higher heights while under continuous cooling. The emission measure (EM), electron density ne and pressure Pe in the PFLs are also estimated.  相似文献   

10.
The propagation of Gardner solitons (GSs) in a nonplanar (cylindrical and spherical) geometry associated with a dusty plasma whose constituents are non-inertial negative static dust, inertial ions, and two population of Boltzmann electrons with two distinctive temperatures, are investigated by deriving the modified Gardner (mG) equation using the reductive perturbation method. The basic features of nonplanar dust-ion-acoustic GSs are analyzed by numerical solutions of mG equation. It has been found that the basic characteristics of GSs, which are shown to exist for the values of μ c =n e10/n i0 around 0.319 for n e20/n i0=0.04 and T e1/T e2=0.2 [where n e10 (n e20) is the cold (hot) electron number density at equilibrium, T e1 (T e2) is the temperature of the cold (hot) electron species] are different from those of K-dV (Korteweg-de Vries) solitons, which do not exist around μ c ?0.319. The implications of our results in understanding the nonlinear electrostatic perturbations observed in many laboratory and astrophysical situations (viz. double-plasma machines, rf discharge plasma, noctilucent cloud region in Earth’s atmosphere, source regions of Auroral Kilometric Radiation, Saturn’s E-ring, etc.) where electrons with different temperatures can significantly modify the wave dynamics, are also briefly discussed.  相似文献   

11.
We summarize the results of our long-term program to study the kinematics, morphology, and physical properties of warm partially ionized interstellar gas located within 100 pc of the Sun. Using the Space Telescope Imaging Spectrograph (STIS) and other spectrographs on the Hubble Space Telescope (HST), we measure radial velocities of neutral and singly ionized atoms that identify comoving structures (clouds) of warm interstellar gas. We have identified 15 of these clouds located within 15 pc of the Sun. Each of them moves with a different velocity vector, and they have narrow ranges of temperature, turbulence, and metal depletions. We compute a three-dimensional model for the Local Interstellar Cloud (LIC), in which the Sun is likely embedded near its edge, and the locations and shapes of the other nearby clouds. These clouds are likely separated by ionized Strömgren sphere gas produced by ? CMa, Sirius B, and other hot white dwarfs. We propose that some of these partially ionized clouds are shells of the Strömgren spheres.  相似文献   

12.
Simulations of the generation of the atomic polarization is necessary for interpreting the second solar spectrum. For this purpose, it is important to rigorously determine the effects of the isotropic collisions with neutral hydrogen on the atomic polarization of the neutral atoms, ionized atoms and molecules. Our aim is to treat in generality the problem of depolarizing isotropic collisions between singly ionized atoms and neutral hydrogen in its ground state. Using our numerical code, we computed the collisional depolarization rates of the p-levels of ions for large number of values of the effective principal quantum number n* and the Unsöld energy Ep. Then, genetic programming has been utilized to fit the available depolarization rates. As a result, strongly non-linear relationships between the collisional depolarization rates, n* and Ep are obtained, and are shown to reproduce the original data with accuracy clearly better than 10%. These relationships allow quick calculations of the depolarizing collisional rates of any simple ion which is very useful for the solar physics community. In addition, the depolarization rates associated to the complex ions and to the hyperfine levels can be easily derived from our results. In this work we have shown that by using powerful numerical approach and our collisional method, general model giving the depolarization of the ions can be obtained to be exploited for solar applications.  相似文献   

13.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

14.
Solar wind interaction with neutral interstellar helium focused by the Sun's gravity in the downwind solar cavity is discussed in a hydrodynamical approach. Upon ionization the helium atoms “picked up” by the (single fluid) solar wind plasma cause a slight decrease in the wind speed and a corresponding marked temperature increase. For neutral helium density outside the cavity nHe = 0.01 atoms cm?3 and for interstellar kinetic temperature THe= 10,000 K, the reduction is speed of the solar wind on the downwind axis at 10 AU from the Sun amounts to about 2kms?1; the solar wind temperature excess attains 7000 K. The resulting pressure excess leads to a non-radial flow of the order of 0.25 km s?1. The possibility of experimental confirmation is discussed.  相似文献   

15.
A model for the production and loss of energetic electrons in Jupiter's radiation belt is presented. It is postulated that the electrons originate in the solar wind and are diffused in toward the planet by perturbations which violate the particles' third adiabatic invariant. At large distances, magnetic perturbations, electric fields associated with magnotospheric convection, or interchange instabilities driven by thermal plasma gradients may drive the diffusion. Inside about 10 RJ the diffusion is probably driven by electric fields associated with the upper atmosphere dynamo which is driven by neutral winds in the ionosphere. The diurnal component of the dynamo wind fields produces a dawn-dusk asymmetry in the decimetric radiation from the electrons in the belts, and the lack of obvious measured asymmetries in the decimetric radiation measurements provides estimates of upper limits for these Jovian ionospheric neutral winds. The average diurnal winds are less than or comparable to those on earth, but only modest fluctuating winds are required to drive the energetic electron diffusion referred to above.The winds required to diffuse the energetic particles across the orbit of the satellite lo in a time equal to their drift period are also estimated. If Io is non-conducting, modest winds are required, but if Io is conducting, only small winds are needed. It is concluded that both protons and electrons are diffused in from the solar wind to small distances without serious losses occurring due to the particles being swept up by the satellites.Consideration of proton and electron diffusion in energy shows that once the electrons become relativistic, the ratio of proton to electron energy increases. Thus, if protons and electrons have the same energy in the solar wind, when the electrons reach nMeV, the protons will be nMeV if n ? 1 or n2 MeV if n ? 1. If the proton-to-electron energy ratio is initially, e.g., 5, then these figures are 5n and 5n2, respectively.  相似文献   

16.
The effect of an interplanetary atomic hydrogen gas on solar wind proton, electron and α-particle temperatures beyond 1 AU is considered. It is shown that the proton temperature (and probably also the α-particle temperature) reaches a minimum between 2 AU and 4 AU, depending on values chosen for solar wind and interstellar gas parameters. Heating of the electron gas depends primarily on the thermal coupling of the protons and electrons. For strong coupling (whenT p ≳T e ), the electron temperature reaches a minimum between 4 AU and 8 AU, but for weak coupling (Coulomb collisions only), the electron temperature continues to decrease throughout the inner solar system. A spacecraft travelling to Jupiter should be able to observe the heating effect of the solar wind-interplanetary hydrogen interaction, and from such observations it may be possible of infer some properties of the interstellar neutral gas. Currently a National Research Council Resident Research Associate.  相似文献   

17.
Spectroscopic observations of four planetary nebulae (PNe) with emission-line central stars of different spectral types are presented: Cn 1-5, Pe 1-1, NGC 5873, and M1-19. The interstellar extinction, physical conditions (n e , T e ), and abundances of several elements (He, N, O, Ne, S, Ar, Cl) have been determined for all nebulae. The nebula Cn 1–5 with fairly high abundances of helium and nitrogen is shown to belong to type I PNe. Possible variability of the intensities of low-excitation emission lines in NGC 5873 has been found; it can be related to variations of the stellar wind from the central star. The measured α-element abundance ratios (S/O, Ne/O, Ar/O, Cl/O) are in good agreement with those typical of HII regions.  相似文献   

18.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

19.
The IR emission of 640 Markarian galaxies (MrkG), included in the IRAS Survey, is considered as an evidence for enhanced star formation rate (SFR) in these objects. About 73% of the MrkG have high far-infrared luminosities (ca. 10E + 44 erg s–1) in 1–500 mcm IR spectral band. The distribution of log(f 60/f 100), peaked at about 45 K, shows that IRAS MrkGs have a tendency to extend the relationf 60/f 100 vsL ir/L bifor normal S glaxies. They emit up to hundred times more IR energy in 40–120 mcm band than in optics. The mean ratio log L ir/L b for 621 IRAS MrkG with known redshifts is 2.2.It is suggested that there are two IR emitting components in the IRAS MrkG - a warm one connected with the UV-fluxes of the newborn massive stars, re-radiated by dust, and a cool one, originated from the dust in galactic disks and heated by the general interstellar radiation field. The warm IR luminosities and warm IR fractions are determined on the basis of IR colour-colour diagrams(25/12),(60/25), and(100/60). The mean warm IR fraction for all Mrk IRAS detected galaxies with well-defined IR fluxes is 0.83 when the grain mass absorption coefficient model withn = 0.0 is used. The dust mass responsible for the IR flux at 60 mcm is derived to be about 10E + 5M , assuming the dust clouds are optically thin, and using the dust temperatureT d 46 K (deduced from thef(60)/f(100) ratio). There is a relation betweenL irandL blwhich points out that the most IRAS MrkG have rather enhanced SFR.  相似文献   

20.
Electron temperature measurements made with Langmuir probes at E-region heights together with deviative absorption data show that the electrons are not in thermal equilibrium with the neutrals. Moreover, for very quiet days (Ap ? 7, Kp ? 1+ throughout the whole day) and hours close to noon the quotients between the electron and neutral gas temperature profiles have a similar behaviour. In this paper Te profiles measured in situ with Langmuir probes and Tn, profiles given by neutral atmosphere models, both in the specified ionospheric conditions, are used to compute TeTn profiles. Each of the profiles thus obtained is fitted by a Lorentzian curve and the variation with F10.7 of its parameters is also fitted by simple mathematical expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号