首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study a new marine electromagnetic configuration that consists of a ship‐towed inductive source transmitter and a series of remote electric dipole receivers placed on the seafloor. The approach was tested at the Palinuro Seamount in the southern Tyrrhenian Sea, at a site where massive sulphide mineralization has been previously identified by shallow drilling. A 3D model of the Palinuro study area was created using bathymetry data, and forward modelling of the electric field diffusion was carried out using a finite volume method. These numerical results suggest that the remote receivers can theoretically detect a block of shallowly buried conductive material at up to ~100 m away when the transmitter is located directly above the target. We also compared the sensitivity of the method using either a horizontal loop transmitter or a vertical loop transmitter and found that when either transmitter is located directly above the mineralized zone, the vertical loop transmitter has sensitivity to the target at a farther distance than the horizontal loop transmitter in the broadside direction by a few tens of metres. Furthermore, the vertical loop transmitter is more effective at distinguishing the seafloor conductivity structure when the vertical separation between transmitter and receiver is large due to the bathymetry. As a horizontal transmitter is logistically easier to deploy, we conducted a first test of the method with a horizontal transmitter. Apparent conductivities are calculated from the electric field transients recorded at the remote receivers. The analysis indicates higher apparent seafloor conductivities when the transmitter is located near the mineralized zone. Forward modelling suggests that the best match to the apparent conductivity data is obtained when the mineralized zone is extended southward by 40 m beyond the zone of previous drilling. Our results demonstrate that the method adds value to the exploration and characterization of seafloor massive sulphide deposits.  相似文献   

2.
Lake sediments may serve as archives on paleoclimatic fluctuations, geomagnetic field variations and volcanic activities. Lake Holzmaar in Eifel/Germany is a maar lake and its lacustrine sediments provide paleoclimatic proxy data. Therefore, knowledge about the geometry and, especially, about the thickness of the sediments is very important for determining an optimum drilling location for paleoclimatic studies. We have developed a floating in‐loop transient electromagnetic method field set up (Float‐transient electromagnetic method) with a transmitter and receiver size of 18 × 18 m2 and 6 × 6 m2 respectively. This special set up enables in‐loop transient electromagnetic method measurements on the surface of freshwater lakes that define the geometry and the thickness of sediments beneath such lakes thus helping to determine optimum drilling locations. Due to the modular design of the new Float‐transient electromagnetic method field set up, this system can be handled by two operators and can easily be transported. Sixteen in‐loop soundings were carried out on the surface of Lake Holzmaar. The transient electromagnetic method data could not be interpreted by conventional 1D inversions because of the 3D distribution of subsurface conductivity caused by the lake's geometry. Three‐dimensional finite element modelling was applied to explain the observed transients and the 3D conductivity distribution beneath the lake was recovered by taking its geometry into account. The 3D interpretation revealed approximately 55 m thick sediments beneath 20 m deep water in the central part of the lake.  相似文献   

3.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   

4.
The paper presents the solution to an axially symmetric problem of the electromagnetic field excited by an electric dipole and a current in a half-infinite cable in a cylindrically layered polarizable medium. The polarization of the medium is described by the Cole-Cole formula, including such parameters as the conductance, polarizability, response time, and attenuation coefficient. The spatiotemporal structures of the field in polarizable and nonpolarizable homogeneous media are compared. The apparent Cole-Cole parameters are defined and determined for a model problem of a cylindrically layered medium.  相似文献   

5.
Electrolytic model tank experiments to study resistivity and time domain induced polarization (IP) response over layered earth models were initiated primarily to facilitate the understanding of field results. Alternate layers of clay and sand (or clay-coated sand) with, in some cases, a surficial layer of water were assembled in the tank and resistivity and IP measurements made for a range of electrode spacings using the Wenner configuration. Graphite and silver-silver chloride electrodes were used as current and potential electrodes respectively. Clay-coated (3% by weight) sand was found to generate stronger polarization than either clay or sand alone. Apparent chargeability ma was observed to be positive for a nonpolarizable surface layer. For a polarizable surface layer, the sign of IP was controlled by the polarizability, the thickness of the second layer, and the spacing of the electrode spreads. The apparent chargeability ma can theoretically change sign from positive to negative and vice versa with a gradual increase in electrode spacing, and such negative IP effects were obtained in a few observations. A simultaneous decrease in IP and an increase in resistivity, which is a qualitative diagnostic feature for the occurrence of clean freshwater sand aquifers, could also be generated in the model tank experiment. Combined resistivity and IP soundings were carried out near Fredericton Junction and Tracy, New Brunswick, Canada. Field curves are presented along with the model curves for qualitative comparison and understanding of IP behaviour over a layered earth. Twenty-five out of twenty-seven soundings show only positive apparent chargeabilities, whereas two show chargeability sign changes (positive/negative/positive). The model study gives reason to believe that surface soils and Quaternary gravel boulder deposits near Fredericton Junction are relatively non-polarizable. As an auxiliary experiment, sand and clay were taken in different proportions by weight and mixed thoroughly with water in a cement mixer. The mixtures were then compressed with a suitable die and plunger under 3.6 Pa pressure to prepare cylindrical samples of height 18 cm and diameter 15.5 cm. IP measurements were done on the flat faces using the Wenner configuration with a= 2 cm. Chargeability was found to be negative for 100 and 90% clay mixtures. It reached a positive maximum for an 80% clay-20% sand mixture and then decreased gradually with increasing sand and decreasing clay content.  相似文献   

6.
Airborne EM skin depths   总被引:1,自引:0,他引:1  
Skin depth is an electromagnetic (EM) scale length that provides a measure of the degree of attenuation experienced by a particular frequency of an EM system. As has been discussed in the literature, skin depth is not a complete measure of the depth of investigation, but the two may be related. Frequency‐domain airborne EM systems employ pairs of transmitter and receiver coils that use a frequency range from several hundred hertz to over 100 kHz. For elevated dipoles, both geometrical and frequency‐dependent attenuation of the induced fields must be considered. For airborne EM systems it is possible to define a skin depth based only on the electric field induced by the transmitter. A vertical decay scale length, here defined from the at‐surface position of maximum electric field, enables the same skin‐depth estimate to be obtained for both cases of vertical and horizontal dipolar excitation. Such dipolar skin depths associated with towed‐bird and fixed‐wing airborne systems are studied in relation to frequency, conductivity and sensor elevation. Dipolar skin depths are found to be much smaller than their plane‐wave counterparts except at high frequency (>50 kHz) and in combination with high conductivity. For the majority of airborne systems the influence of altitude on skin depth is highly significant. Dipolar skin depths increase with increasing sensor elevation. Low frequencies display the greatest sensitivity. At low elevation (<40 m), geometrical attenuation dominates the behaviour of the skin depth. The study indicates that typical low‐altitude airborne surveys provide vertically compact assessments of subsurface conductivity, well suited to near‐surface, environmental applications.  相似文献   

7.
The electromagnetic response of a horizontal electric dipole transmitter in the presence of a conductive, layered earth is important in a number of geophysical applications, ranging from controlled‐source audio‐frequency magnetotellurics to borehole geophysics to marine electromagnetics. The problem has been thoroughly studied for more than a century, starting from a dipole resting on the surface of a half‐space and subsequently advancing all the way to a transmitter buried within a stack of anisotropic layers. The solution is still relevant today. For example, it is useful for one‐dimensional modelling and interpretation, as well as to provide background fields for two‐ and three‐dimensional modelling methods such as integral equation or primary–secondary field formulations. This tutorial borrows elements from the many texts and papers on the topic and combines them into what we believe is a helpful guide to performing layered earth electromagnetic field calculations. It is not intended to replace any of the existing work on the subject. However, we have found that this combination of elements is particularly effective in teaching electromagnetic theory and providing a basis for algorithmic development. Readers will be able to calculate electric and magnetic fields at any point in or above the earth, produced by a transmitter at any location. As an illustrative example, we calculate the fields of a dipole buried in a multi‐layered anisotropic earth to demonstrate how the theory that developed in this tutorial can be implemented in practice; we then use the example to examine the diffusion of volume charge density within anisotropic media—a rarely visualised process. The algorithm is internally validated by comparing the response of many thin layers with alternating high and low conductivity values to the theoretically equivalent (yet algorithmically simpler) anisotropic solution, as well as externally validated against an independent algorithm.  相似文献   

8.
The problem of discrimination between a valid induced polarization (IP) response and electromagnetic (EM) coupling effects is considered and an effective solution is provided. First, a finite dimensional approximation to the Cole‐Cole model is investigated. Using the least‐squares approach, the parameters of the approximate model are obtained. Next, based on the analysis of overvoltage, a finite dimensional structure of the IP model is produced. Using this overvoltage‐based structure, a specific finite dimensional approximation of the Cole‐Cole model is proposed. Summarizing the analysis of the finite dimensional IP model, it is concluded that the proposed IP model, which fits the field data much better than the traditional Cole‐Cole model, is essentially an RC‐circuit. From a circuit‐analysis point of view, it is well known that an electromagnetic effect can be described by an RL‐circuit. The simulation results on experimental data support this conception. According to this observation, a new method to discriminate between a valid IP response and EM coupling effects is proposed as follows: (i) use a special finite dimensional model for IP–EM systems; (ii) obtain the parameters for the model using a least‐squares approach; (iii) separate RC‐type terms and RL‐type terms – the first models the IP behaviour, the latter represents the EM part. Simulation on experimental data shows that the method is very simple and effective.  相似文献   

9.
Transient electromagnetic measurements with short time‐delays of transients are used for solving different problems within the upper part of a geoelectric section. However, it is necessary to take into consideration distortions connected with self‐transients within the transmitter–receiver system. From the practical point of view, it is important to estimate the minimum time‐delay after which these distortions may be neglected. We present such an estimation which uses a simple approximation method for a single‐loop (or coincident‐loop) configuration. For common values of the loop size (10 m × 10 m to 40 m × 40 m) and of the resistivity of a homogeneous half‐space (1–100 Ωm), the minimum time‐delay beyond which we can use a standard interpretation is in the range of 2–10 µs. This is equivalent to a minimum depth of investigation in the range of 1–30 m.  相似文献   

10.
It is now believed that the negative transients observed in coincident-loop transient electromagnetic (TEM) measurements are caused by polarizable bodies (bodies whose conductivity increases as a function of frequency). Ordinarily the TEM response of polarizable bodies is obtained by calculating the frequency-domain response at many frequencies and transforming it to the time domain via Fourier, Laplace or Hankel transforms. This is normally a computationally laborious task. However, for some simple non-polarizable bodies the time-domain response is analytical and can be computed easily. When these simple bodies are weakly polarizable an approximate response can be obtained by convolving the easily-calculated, non-polarizable response with the impulse response of the polarization. The approximate response is found to be very similar to the exact response for the polarizabilities normally seen in geological materials.  相似文献   

11.
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies.Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector.During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP.With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.  相似文献   

12.
地形对长偏移距瞬变电磁测深的影响研究(英文)   总被引:3,自引:1,他引:2  
用基于张量格林函数的体积分方程法对三维异常体进行瞬变电磁响应的正演模拟,首先在频率域内计算电磁场分量的频率域响应,然后利用快速数字滤波技术将计算结果转换到时间域。设计和计算了水平电偶极子源激发下层状水平地层模型背景下的常见地形如山谷、山峰地形的模型,并考察分别把源和接收器放于这些地形中的瞬变电磁场响应,详细分析了这些地形对长偏移距瞬变电磁测深(LOTEM)的影响。结果表明,山谷和山峰地形对LOTEM的结果均有不同程度的影响。当电偶极子源放在山谷谷底时,地形对观测异常场的畸变非常严重;当接收器放在山谷中时,接收器处地形的影响强烈但该影响在空间和时间上只是局部的。总体来讲,不论山峰地形位于何处,其对LOTEM的影响相对较小。当地形处于发射源与接收器之间时,地形对LOTEM的影响非常小,表明在进行LOTEM勘探时,选择发射源的放置比接收器的位置更加重要,野外勘探是尽量把发射源选择在开阔的平坦位置。  相似文献   

13.
The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain forward modeling of marine CSEM that considers the induced polarization. The geoelectrical model is discretized using an unstructured triangular elemental grid that accommodates the complex topography and geoelectrical structures. We use the Cole–Cole model to describe the IP and develop a complex resistivity forward modeling algorithm. We compare the simulation results with published 1D model results and subsequently calculate the electromagnetic field for variable azimuth sources, IP parameters, and topography. Finally, we analyze the IP effect on the marine CSEM field and show that IP of oil reservoirs and topography affects the marine CSEM electromagnetic field.  相似文献   

14.
The electromagnetic surface detection of underground quarries by classical methods becomes difficult when they are situated at depths greater than ten meters and when the thickness and conductivity of the superficial layers are irregular. The problem is tackled in two stages: at first using successive approximations, characteristics of the miscellaneous layers of a stratified medium are identified, and the quarries are then detected by observation of the conductivity changes of one of the lower layers. Computer interpretation, however, is necessary. The chances of detection of the quarries are considerably improved by a field localization method developed by us: computer interpretation is eliminated. The new aspect is an auxiliary transmitter which annuls the currents induced by the principal transmitter in the uppermost—generally more conductive—layers. The theoretical and experimental results show that the probability of detection of the quarries by this method are four times as high as by the classical one.  相似文献   

15.
Seafloor massive sulfide (SMS) deposits are generated by high-temperature hydrothermal systems. Their precious resources have attracted global interest. A number of investigations with controlled-source electromagnetic (CSEM) methods have been implemented in recent years. There are three major problems with SMS surveying using EM methods. First, SMS imaging techniques for hydrothermal systems have a limited range. Simulations and applications have validated only simple layered models. Second, their inversion efficiencies must be improved further. Laterally constrained inversions and spatially constrained inversions are usually used to map geological structures. However, choosing their suitable weighting parameters is inefficient. Third, the effects of induced polarization (IP) on ore deposits are not considered in such inversions. A non-polarizable model is unable to accurately depict a polarizable model. To resolve these problems, an advanced strategy is used to improve the efficiency of the pseudo-3D inversion process. The proposed imaging method has the ability to map complex 3D geoelectrical structures, and therefore, it can both obtain information regarding surface ore deposits and distinguish between active and inactive hydrothermal systems. However, this method can also be used to depict the distributions of alteration zones and buried deposits. Furthermore, the influences of IP on the inversion are discussed with respect to the Cole- Cole model, and it is shown that the effects of IP on polarizable deposits cannot be ignored during the inversion.  相似文献   

16.
The expressions for quasi-static electromagnetic fields of a horizontal electrical dipole placed on the surface of a polarizable half-space have been derived for low and high values of induced polarization parameter and presented along with numerical results. It has been observed that the polarity of the mutual impedance function is negative for low values and positive for high values of the induced polarization parameter in the entire time domain, whereas the induced voltage function is positive for low values of induced polarization parameter and becomes negative for high values. In the case of low values of induced polarization parameter the transient electromagnetic field in the beginning increases with time, later on it starts to decay with time. The present study shows that the decay rate of electromagnetic field is highly dependent upon the induced polarization parameter. In the light of the present study the conductivity of the polarizable medium may be determined more accurately.  相似文献   

17.
The article discusses the excitation of transient induced polarization responses using current and voltage sources. The first method has found a wide application in induced polarization surveys and—directly or indirectly—in the theory of the induced polarization method. Typically, rectangular current pulses are injected into the earth via grounding electrodes, and decaying induced polarization voltage is measured during the pauses between pulses. In this case, only the secondary field is recorded in the absence of the primary field, which is an important advantage of this method. On the other hand, since the current injected into the ground is fully controlled by the source, this method does not allow studying induced polarization by measuring the current in the transmitter line or associated magnetic field. When energising the earth with voltage pulses, the measured quantity is the transient induced polarization current. In principle, this method allows induced polarization studies to be done by recording the transmitter line current, the associated magnetic field, or its rate of change. The decay of current in a grounded transmitter line depends not only on the induced polarization of the earth but also on the polarization of the grounding electrodes. This problem does not occur when induced polarization transients in the earth are excited inductively. A grounded transmitter line is a mixed‐type source; hence, for a purely inductive excitation of induced polarization transients, one should use an ungrounded loop, which is coupled to the earth solely by electromagnetic induction.  相似文献   

18.
We investigate the early time induced polarization (IP) phenomenon in frozen unconsolidated rocks and its association with transient electromagnetic (TEM) signals measured in northern regions. The distinguishing feature of these signals is the distortion of the monotony or sign reversals in the time range from a few tens to a few hundreds of microseconds. In simulating TEM data, the IP effects in frozen ground were attributed to the dielectric relaxation phenomenon rather than to the frequency‐dependent conductivity. This enabled us to use laboratory experimental data available in the literature on dielectric spectroscopy of frozen rocks. In our studies we focused on simulating the transient response of a coincident‐loop configuration in three simple models: (i) a homogeneous frozen earth (half‐space); (ii) a two‐layered earth with the upper layer frozen; (iii) a two‐layered earth with the upper layer unfrozen. The conductivities of both frozen and unfrozen ground were assumed to exhibit no frequency dispersion, whereas the dielectric permittivity of frozen ground was assumed to be described by the Debye model. To simplify the presentation and the comparison analysis of the synthetic data, the TEM response of a frozen polarizable earth was normalized to that of a non‐polarizable earth having the same structure and resistivities as the polarizable earth. The effect of the dielectric relaxation on a TEM signal is marked by a clearly defined minimum. Its time coordinate tmin is approximately three times larger than the dielectric relaxation time constant τ. This suggests the use of tmin for direct estimation of τ, which, in turn, is closely associated with the temperature of frozen unconsolidated rock. The ordinate of the minimum is directly proportional to the static dielectric permittivity of frozen earth. Increasing the resistivity of a frozen earth and/or decreasing the loop size results in a progressively stronger effect of the dielectric relaxation on the TEM signal. In the case of unfrozen earth, seasonal freezing is not likely to have an appreciable effect on the TEM signal. However, for the frozen earth, seasonal thawing of a near‐surface layer may result in a noticeable attenuation of the TEM signal features associated with dielectric relaxation in a frozen half‐space. Forward calculations show that the dielectric relaxation of frozen unconsolidated rocks may significantly affect the transient response of a horizontal loop laid on the ground. This conclusion is in agreement with a practical example of inversion of the TEM data measured over the permafrost.  相似文献   

19.
A large closed wire loop is generally used in field experiments for testing airborne electrical exploration equipment. Thus, methods are required for the precise calculation of an electromagnetic response in the presence of a closed wire loop. We develop a fast and precise scheme for calculating the transient response for such a closed loop laid out at the surface of a horizontally layered conductive ground. Our scheme is based on the relationship between the magnetic flux flowing through a closed loop and the current induced in it. The developed scheme is compared with 2D and 3D finite‐element modelling for several positions of an airborne electromagnetic system flying over a closed loop. We also study the coupling effect between the current flowing in the closed loop and the current flowing in the horizontally layered conductive medium. The result shows that for the central position of the transmitter, the difference between axisymmetrical finite‐element modelling and our scheme is less than 1%. Moreover, for the non‐coaxial transmitter–receiver–loop system, the solution obtained by our scheme is in good agreement with full 3D finite‐element modelling, and our total simulation time is substantially lower: 1 minute versus 120 hours.  相似文献   

20.
有限元感应测井模拟的背景场选择方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
王健  陈浩  王秀明  张雷 《地球物理学报》2015,58(6):2177-2187
在感应测井的有限元模拟中,为了消除源的奇异性,一般将总场分解为背景场和散射场.本文定量研究了不同背景场选择方法对计算精度的影响.首先,分析了在均匀和径向分层介质中不同背景电导率对长短源距线圈系有限元模拟结果的影响;其次,利用三层介质模型对比了选择源点附近和线圈系中点附近地层电导率作为背景电导率的结果.研究结果表明,如果在选择背景场时,只考虑源附近的散射场梯度而不同时考虑源和接收器附近的散射场梯度,计算误差明显增大.在此基础上提出一种利用Gianzero几何因子计算的视电导率作为背景电导率的新的背景场方法.该方法综合考虑了围岩、井眼、线圈距等因素,特别是在介质分界面处,可有效减小计算误差,并取得了满意的精度.本研究为复杂环境下的感应测井模拟的背景场选择提供了指导和依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号