首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
i
Gravity data are used to investigate the geological structure of an area of about 160000 square miles in the light of the crustal warping hypothesis. The region is in N.W. Pakistan and India, and includes the whole of the alluvial plains of Sind and Punjab, the Salt Range and the Potwar Plateau.
A new gravity anomaly is introduced and used by an original method, which leads automatically to the detailed contouring of the basement rock below the region, the basement being assumed to be the upper surface of the Earth's crust. The standard crustal section employed is a two-layer crust with a total thickness of thirty kilometres but a table permits direct comparison with other sections of a six-layer crust, two of which have increased thickness.
The basement contours show a ridge about 300 miles long separating the Indus Basin from the Lahore Basin. It is hidden by alluvium except for a few outcrops near its northern end. This ridge has apparently suffered sub-aerial erosion under typical S.W. monsoon conditions, extending in places to a depth of over 3000 feet below sea level. This modification of the basement requires a revision of the contours over the ridge, and two contoured charts show firstly the simple crustal upwarp underlying the ridge and secondly the eroded surface of the basement. A deep valley with its bottom far below sea level cuts through the ridge connecting the Indus and Lahore Basins. In Sind a similar valley leads from the direction of the sea to the Indus Basin, but here interpretation is uncertain.
It is concluded that the hypothesis yields results giving depths to the basement of the right order in deeply downwarped areas, but in upwarped areas the possibility of erosion, or other concealing factors, leads to uncertainty of interpretation unless the area is wide enough to include a complete section of the upwarp.  相似文献   

2.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

3.
The understanding of the crustal transition between orogenic zones and cratonic portions in distal regions of foreland basins has received increasing attention, but the analysis is often hampered by the sedimentary cover. Despite the peculiar location of the Acre Basin, specifically between the Amazonian Craton and the sub-Andean zone, local basement studies are still scarce due to lacking seismic data and exploratory wells. Therefore, this work aims to map basement depths, estimate crustal compositions and identify the main depocenters, structures and limits of Acre Basin using an integrated analysis to understand better the region lithospheric evolution, its relationship with the Amazonian Craton and its positioning within the Andean orogeny. For that, we used well, 2D seismic reflection, airborne and ground gravity and magnetic data as well as the EMG2008. Tilt Depth estimates indicate basement depths between 500 and 7800 m and larger sedimentary thicknesses in the northern portion. Additionally, we modelled groups of potential sources between 0.1 and 22 km and Moho depths between 26 and 37 km. Compositionally, the upper crust consists dominantly of meta-sedimentary and low-grade metamorphic rocks and granites, indicating that the sub-Andean and Acre Basins share a similar basement. Thus, there are indications that the basement of the Acre Basin is essentially formed by the Sunsás province in the Amazonian Craton. However, local differences in basement depth, magnetic susceptibility and exploratory potential led to the subdivision into Divisor and Xapuri sub-basins, north and south of the Fitzcarrald Arch, respectively. Finally, it was possible to establish the limits of the Andean orogeny influence in the Acre Basin and delimit the area of the Western Amazon Foredeep installed during the Neogene.  相似文献   

4.
Summary. A total of 161 km of deep seismic profiles have been shot in the region. One profile crosses the Protogine zone in SW Sweden. Over most of the profile short, weak reflectors are seen The only area with a concentration of reflectors is in the upper two seconds between the two tectonic zones. A nearly transparent area east of the Protogine zone is interperted as a deep granite intrustion. In the Siljan impact structure where four profiles were shot, the NE part of the structure is dominated by upper crustal high amplitude reflectors. Possible causes are discussed.  相似文献   

5.
Summary. In 1984, the Australian Bureau of Mineral Resources and the Geological Survey of Queensland recorded a regional seismic reflection profile of over 800 km length from the eastern part of the Eromanga Basin to the Beenleigh Block east of the Clarence Moreton Basin. A relatively transparent upper crustal basement with an underlying, more reflective lower crust is characteristic of much of the region. Prominent westerly dipping reflectors occur well below the sediments of the eastern margin of the Clarence Moreton Basin and the adjacent Beenleigh Block, and provide some of the most interesting features of the entire survey. A wide angle reflection/refraction survey of 192 km length and an expanding reflection spread of 25 km length were recorded across the Nebine Ridge. The only clear deep reflectors are interpreted as P-to-SV or SV-to-P converted reflections from a mid-crustal boundary at a depth of about 17 km. The combined Nebine Ridge data provide well-constrained P and S wave velocity models of the upper crust, and suggest a crustal structure quite different from that beneath the adjacent Mesozoic basins.  相似文献   

6.
Deep seismic reflectors in the Campos basin, offshore Brazil   总被引:1,自引:1,他引:0  
Summary. Some deep crustal features underlying the Campos basin are best recognized in a few reflection seismic sections that have been reprocessed recently to 10 s two-way traveltime. A prominent climbing-to-the-basin reflector is interpreted as the Moho, and a relatively steep fracture zone is, probably, the first example so far of an extensional fault crossing the whole crust and offsetting the Moho. Further constraints on the deep structure of the basin are provided by estimating the thinning of the crust from shallow seismic data and gravity modelling, and by cross-plotting backstripped subsidence curves against curves predicted by the lithospheric stretching model.  相似文献   

7.
Several years of broad-band teleseismic data from the GRSN stations have been analysed for crustal structure using P -to- S converted waves at the crustal discontinuities. An inversion technique was developed which applies the Thomson-Haskell formalism for plane waves without slowness integration. The main phases observed are Moho conversions, their multiples in the crust, and conversions at the base of the sediments. The crustal thickness derived from these data is in good agreement with results from other studies. For the Gräfenberg stations, we have made a more detailed comparison of our model with a previously published model obtained from refraction seismic experiments. The refraction seismic model contains boundaries with strong velocity contrasts and a significant low-velocity zone, resulting in teleseismic waveforms that are too complicated as compared to the observed simple waveforms. The comparison suggests that a significant low-velocity zone is not required and that internal crustal boundaries are rather smooth.  相似文献   

8.
Summary. The active Australian-Pacific plate boundary passes through New Zealand. In the north, the Pacific plate subducts beneath the Australian plate with an accretionary wedge forming the eastern continental (Hikurangi) margin of the North Island. The structure of the region behind the Hikurangi margin changes from the extensional back-arc basin under central North Island to a postulated crustal downwarp under the southern North Island. A 100 km long multichannel seismic reflection profile was recorded across the region of crustal downwarp. The data show discontinuous coherent reflectors dipping westwards at the east end of the profile, and east dipping reflectors at the west end, from depths of 9 to 15 s two way time. Simple hand migration of these events indicate that the east dipping reflectors, interpreted as the base of the Australian plate crust, abut against the west dipping reflectors which are interpreted as marking the top of the subducted Pacific plate. Detailed earthquake hypocentre locations in the area show a dipping zone of high seismicity, the top of which coincides closely with the west dipping events, thus supporting this interpretation.  相似文献   

9.
The results of deep reflection profiling studies carried out across the palaeo-meso-Proterozoic Delhi Fold Belt (DFB) and the Archaean Bhilwara Gneissic Complex (BGC) in the northwest Indian platform are discussed in this paper. This region is a zone of Proterozoic collision. The collision appears to be responsible for listric faults in the upper crust, which represent the boundaries of the Delhi exposures. In these blocks the lower crust appears to lie NW of the respective surface exposures and the reflectivity pattern does not correspond to the exposed blocks. A fairly reflective lower crust northwest of the DFB exposures appears to be the downward continuation of the DFB upper crust. The poorly reflective lower crust under the exposed DFB may be the westward extension of the BGC upper crust at depth. Thus, the lower crust in this region can be divided into the fairly reflective Marwar Basin (MB)-DFB crust and a poorly reflective BGC crust. Vertically oriented igneous intrusions may have disturbed the lamellar lower-crustal structure of the BGC, resulting in a dome-shaped poorly reflective lower crust whose base, not traceable in the reflection data, may have a maximum depth of about 50 km, as indicated by the gravity modelling.
The DFB appears to be a zone of thick (45-50 km) crust where the lower crust has doubled in width. This has resulted in three Moho reflection bands, two of which are dipping SE from 12.5 to 15.0 s two-way time (TWT) and from 14.5 to 16.0 s TWT. Another band of subhorizontal Moho reflections, at ≈ 12.5 s TWT, may have developed during the crustal perturbations related to a post-Delhi tectonic orogeny. The signatures of the Proterozoic collision, in the form of strong SE-dipping reflections in the lower crust and Moho, have been preserved in the DFB, indicating that the crust here has not undergone any significant ductile deformation since at least after the Delhi rifting event.  相似文献   

10.
Summary. Teleseismic P -wave residuals relative to CWF, a permanent shortperiod seismic station on Charnwood Forest in the Central Midlands of England, have been determined for two small aperture arrays deployed over the Precambrian block of Charnwood and its surrounding Phanerozoic sediments. The data have been inverted to produce a block model of the P -wave velocity variations in the crust and upper mantle beneath the study region. The results are consistent with significant variations penetrating to a depth of at least 50 km. Low velocities are associated with two upper crustal intrusive bodies, the Caledonian Mountsorrel granodiorite and the South Leicestershire diorites. A longer-wavelength variation at lower crustal/upper mantle depths could arise from the Moho dipping to the south-west beneath the study region, and whose strike sub-parallels the dominant Charnian trend of the major basement structures in this part of Central England.  相似文献   

11.
Summary. This paper concerns the calculation and analysis of admittance functions from large and uniform data sets of gravity and topography in four regions of the northern and western Pacific Ocean. The purpose is to separate and describe possible differences in isostatic compensation between several 'type' regions of oceanic crust: a mid-ocean ridge (Juan de Fuca), a mid-plate seamount chain (Hawaiian Ridge), fracture zone topography on old crust (north of Hawaii) and a marginal basin (Philippine Sea). Results suggest that there are significant differences in the degree to which long wavelength topography has been compensated which can be distinguished between regions. These differences are set in the perspective of three simple compensation mechanisms. Two of these consider local Airy models in which raised topography is compensated at depth either by crustal roots or low density mantle. A third considers the effects of an elastic plate of variable thickness supporting crustal variations. Conclusions are that: (a) a thick plate possibly in excess of 30 km supports the Hawaiian Ridge; (b) a much thinner plate of 5 to 15 km existed when the fracture zone topography was formed; (c) the Juan de Fuca Ridge is compensated either regionally by a plate 5 to 10 km thick or locally by sub-crustal low densities at depths of 15 to 20 km; and (d) the Philippine Sea shows no evidence for regional support: ridges are compensated locally by differences in crustal thickness whereas the basins are underlain by density variations at depths comparable to those of the much younger Juan de Fuca Ridge. The major difference between admittance functions for the Philippine Sea and comparably aged regions of the north Pacific Ocean adds further new evidence of possible evolutionary differences between it and normal ocean basins.  相似文献   

12.
Crustal structure and local seismicity in western Anatolia   总被引:4,自引:0,他引:4  
Western Anatolia is one of the most seismically active continental regions in the world and much of it has been undergoing NS-directed extensional deformation since Early Miocene time. In a cooperative study, seismologists from Saint Louis University, USA and Dokuz Eylül University, Turkey, deployed five broad-band and 45 short-period seismic stations in western Anatolia between 2002 November and 2003 October. The present paper uses data collected by this network and the data from five permanent stations operated by the Kandilli Observatory and Earthquake Research Institute to map the hypocentral distribution of local earthquakes and to determine crustal structure of western Anatolia. We obtained a 1-D P -wave crustal velocity model using a generalized scheme for simultaneously obtaining earthquake locations and a crustal velocity model. Our velocity model is characterized by crustal velocities that are significantly lower than average continental values. The low velocities may be associated with high crustal temperatures, a high degree of fracture, or the presence of fluids at high pore pressure in the crust. We located 725 local earthquakes and classified them in three categories. We found that the level of seismic activity in western Anatolia is higher than previously reported. Station delays resulting from the inversion process correlate with near-surface geology and the thickness of sediments throughout the region. The hypocentral distribution of the events indicates that peak seismicity for the region occurs at depths of about 10 km.  相似文献   

13.
Summary. An attempt is made to determine the range of two-dimensional current models consistent with the measured magnetovariational response, for periods from 5–30 min, near the Great Glen Fault in northern Scotland. All current models must be symmetric about the fault line but, because of uncertainty about the magnitude of the ocean effect, models ranging from a line current at 80 km depth to a uniform current sheet, 60 km wide, at 10 km depth are equally acceptable. Comparison with other geophysical studies of the same area suggests that a suitable conducting zone is unlikely to be present at shallow depths and interpretation in terms of a conducting zone in the 20–80 km depth range is favoured, although no such zone has been resolved by the other studies.  相似文献   

14.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

15.
We conduct the seismic signal analysis on vintage and recently collected multichannel seismic reflection profiles from the Ionian Basin to characterize the deep basin Messinian evaporites. These evaporites were deposited in deep and marginal Mediterranean sedimentary basins as a consequence of the “salinity crisis” between 5.97 and 5.33 Ma, a basin-wide oceanographic and ecological crisis whose origin remains poorly understood. The seismic markers of the Messinian evaporites in the deep Mediterranean basins can be divided in two end-members, one of which is the typical “trilogy” of gypsum and clastics (Lower Unit – LU), halite (Mobile Unit – MU) and upper anhydrite and marl layers (Upper Unit – UU) traced in the Western Mediterranean Basins. The other end-member is a single MU unit subdivided in seven sub-units by clastic interlayers located in the Levant Basin. The causes of these different seismic expressions of the Messinian salinity crisis (MSC) appear to be related to a morphological separation between the two basins by the structural regional sill of the Sicily Channel. With the aid of velocity analyses and seismic imaging via prestack migration in time and depth domains, we define for the first time the seismic signature of the Messinian evaporites in the deep Ionian Basin, which differs from the known end-members. In addition, we identify different evaporitic depositional settings suggesting a laterally discontinuous deposition. With the information gathered we quantify the volume of evaporitic deposits in the deep Ionian Basin as 500,000 km3 ± 10%. This figure allows us to speculate that the total volume of salts in the Mediterranean basin is larger than commonly assumed. Different depositional units in the Ionian Basin suggest that during the MSC it was separated from the Western Mediterranean by physical thresholds, from the Po Plain/Northern Adriatic Basin, and the Levant Basin, likely reflecting different hydrological and climatic conditions. Finally, the evidence of erosional surfaces and V-shaped valleys at the top of the MSC unit, together with sharp evaporites pinch out on evaporite-free pre-Messinian structural highs, suggest an extreme Messinian Stage 3 base level draw down in the Ionian Basin. Such evidence should be carefully evaluated in the light of Messinian and post-Messinian vertical crustal movements in the area. The results of this study demonstrates the importance of extracting from seismic data the Messinian paleotopography, the paleomorphology and the detailed stratal architecture in the in order to advance in the understanding of the deep basins Messinian depositional environments.  相似文献   

16.
The Narmada zone in central India is a zone of weakness that separates the region of Vindhyan (Meso-Neoproterozoic) deposition to the north from Gondwana (Permo-Carboniferous–lower Cretaceous) deposits to the south. The reinterpretation of analogue seismic refraction data, acquired during the early 1980s, using 2-D ray-tracing techniques reveals a basement (velocity 5.8–6.0 km s−1 ) topography suggesting that the Narmada zone, bounded by the Narmada North and Narmada South faults is a region of basement uplift. A layer of anomalously high velocity (6.5–6.7 km s−1 ) at depths between 1.5 and 9.0 km appears to be present in the entire region. Within the Narmada zone this layer occurs at shallower depths than outside the Narmada zone. At two places within the Narmada zone this layer is at a depth of about 1.5 km. This layer cannot be considered as the top of the lower crust because in this case it should have produced large positive gravity anomalies at the shallowest parts. Instead, these parts correspond to Bouguer gravity lows. Furthermore, lower crust at such shallow depths has not been reported from any other part of the Indian shield. Therefore, this layer is likely to represent the top of a high-velocity mafic body that has different thicknesses in different places.  相似文献   

17.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

18.
The deep resistivity structure was estimated along a 400-km profile in central Poland crossing the Malopolska Massif (MM), the Lysogory Unit (LU), the Trans-European Suture Zone (TESZ) and ending at the East European Craton (EEC). Magnetotelluric transfer functions, corresponding to 20 sites, were supplemented by magnetovariational responses obtained at the geomagnetic observatories situated at the same tectonic units. Such a combination made it possible to extend the initial period range, which is from fractions of a second to several hours, up to months in order to reliably cover crustal and upper-mantle depths. The geoelectrical structures, revealed using 2-D inversions, do not contradict the known features of the lithosphere structure determined using seismic and gravity data along the profile.
The subsurface conductance, varying from approximately 10 Siemens at the inner part of the EEC to about 600 Siemens in the TESZ, is produced by sediments, the deep part of which contains conductive, highly mineralized water. The existence of two crustal conductive faults at the southwest and northeast of the TESZ were established mainly by the use of induction arrows. It was also revealed that rather high mantle conductivity beneath the MM, LU and TESZ at depths of about 150–200 km contrasts with the resistive upper mantle of the EEC. This can be interpreted as the decrease of asthenosphere conductance and/or as its submersion beneath the EEC. Generally, the results confirm the idea that the TESZ forms not only specific seismic boundaries but also causes peculiar conductivity anomalies in the crust and upper mantle.  相似文献   

19.
Summary. Attention has recently been focused on the structure and composition of the lower crust in continental areas. It is generally believed that, except in special circumstances, ductile behaviour below mid-crustal depths precludes the brittle processes that cause earthquakes. The 1984 July 19 earthquake in North Wales occurred at the unexpected depth of 23 km. We report here the location of the larger aftershocks and the relocation of the main shock with respect to one of them. The lower crustal depths of the events are confirmed by tests with a wide range of models. The occurrence of earthquakes at these depths may be related to low heat flow in the region.  相似文献   

20.
Earthquake arrival time data from a 36-station deployment of portable seismographs on the Raukumara Peninsula have been used to determine the 3-D Vp and Vp/Vs structure of this region of shallow subduction. A series of inversions have been performed, starting with an inversion for 1-D structure, then 2-D, and finally 3-D. This procedure ensures a smooth regional model in places of low resolution. The subducted plate is imaged as a northwest-dipping feature, with Vp consistently greater than 8.5  km  s−1 in the uppermost mantle of the plate. Structure in the overlying plate changes significantly along strike. In the northeast, there is an extensive low-velocity zone in the lower crust underlying the most rapidly rising part of the Raukumara Range. It is bounded on its arcward side by an upwarp of high velocity. A viable explanation for the low-velocity zone is that it represents an accumulation of underplated subducted sediment, while serpentinization of the uppermost mantle may be responsible for the adjacent high-velocity region. The low-velocity zone decreases and the adjacent high-velocity region is less extensive in the southwest. This change is interpreted to be related to a change in the thickness of the crust of the overlying plate. In the northeast the crust is thinner, and subducted sediment ponds against relatively strong uppermost mantle, while in the southwest the crust is thicker, and the relatively weak lower crust allows sediment subduction to greater depths. A narrow zone of high Vp/Vs parallels the shallow part of the plate interface. This suggests elevated fluid pressures, with the distribution of earthquakes about this zone further suggesting that these pressures may be close to lithostatic. The plate interface at 20  km depth beneath the Raukumara Peninsula may thus be a closed system for fluid flow, similar to that seen at much shallower depths in other subduction décollements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号