首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A 2-D global chemistry-transport model is set up in this paper.The model simulates theatmospheric ozone distributions well with specified dynamical conditions.The analysis of ozonevariation mechanism shows that ozone is chemically in quasi-equilibrium except for the polar nightregion where the variation of ozone concentration is under the control of dynamical processes,thatthe oxygen atoms which produce ozone are mainly provided by the photolysis of O_2 in the upperstratosphere and by the photolysis of NO_2 in the lower stratosphere and the troposphere.and thatthe ozone is destroyed mainly by NO_x:the reactions between NO_x and O_3 and the odd oxygen cyclecontribute 80% to more than 90% of the ozone destruction.  相似文献   

2.
Abstract

To evaluate future climate change in the middle atmosphere and the chemistry–climate interaction of stratospheric ozone, we performed a long-term simulation from 1960 to 2050 with boundary conditions from the Intergovernmental Panel on Climate Change A1B greenhouse gas scenario and the World Meteorological Organization Ab halogen scenario using the chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). In addition to this standard simulation we performed five sensitivity simulations from 2000 to 2050 using the rerun files of the simulation mentioned above. For these sensitivity simulations we used the same model setup as in the standard simulation but changed the boundary conditions for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone-depleting substances (ODS). In the first sensitivity simulation we fixed the mixing ratios of CO2, CH4, and N2O in the boundary conditions to the amounts for 2000. In each of the four other sensitivity simulations we fixed the boundary conditions of only one of CO2, CH4, N2O, or ODS to the year 2000.

In our model simulations the future evolution of greenhouse gases leads to significant cooling in the stratosphere and mesosphere. Increasing CO2 mixing ratios make the largest contributions to this radiative cooling, followed by increasing stratospheric CH4, which also forms additional H2O in the upper stratosphere and mesosphere. Increasing N2O mixing ratios makes the smallest contributions to the cooling. The simulated ozone recovery leads to warming of the middle atmosphere.

In the EMAC model the future development of ozone is influenced by several factors. 1) Cooler temperatures lead to an increase in ozone in the upper stratosphere. The strongest contribution to this ozone production is cooling due to increasing CO2 mixing ratios, followed by increasing CH4. 2) Decreasing ODS mixing ratios lead to ozone recovery, but the contribution to the total ozone increase in the upper stratosphere is only slightly higher than the contribution of the cooling by greenhouse gases. In the polar lower stratosphere a decrease in ODS is mainly responsible for ozone recovery. 3) Higher NOx and HOx mixing ratios due to increased N2O and CH4 lead to intensified ozone destruction, primarily in the middle and upper stratosphere, from additional NOx; in the mesosphere the intensified ozone destruction is caused by additional HOx. In comparison to the increase in ozone due to decreasing ODS, ozone destruction caused by increased NOx is of similar importance in some regions, especially in the middle stratosphere. 4) In the stratosphere the enhancement of the Brewer-Dobson circulation leads to a change in ozone transport. In the polar stratosphere increased downwelling leads to additional ozone in the future, especially at high northern latitudes. The dynamical impact on ozone development is higher at some altitudes in the polar stratosphere than the ozone increase due to cooler temperatures. In the tropical lower stratosphere increased residual vertical upward transport leads to a decrease in ozone.  相似文献   

3.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

4.
The response of tropospheric ozone to a change in solar UV penetration due to perturbation on column ozone depends critically on the tropospheric NO x (NO+NO2) concentration. At high NO x or a polluted area where there is net ozone production, a decrease in column ozone will increase the solar UV penetration to the troposphere and thus increase the tropospheric ozone concentration. However, the opposite will occur, for example, at a remote oceanic area where NO x is so low that there is net ozone destruction. This finding may have important implication on the interpretation of the long term trend of tropospheric ozone. A change in column ozone will also induce change in tropospheric OH, HO2, and H2O2 concentrations which are major oxidants in the troposphere. Thus, the oxidation capacity and, in turn, the abundances of many reduced gases will be perturbed. Our model calculations show that the change in OH, HO2, and H2O2 concentrations are essentially independent of the NO x concentration.  相似文献   

5.
A mean meridional circulation model of the stratosphere, incorporating radiative heating and photochemistry of the oxygen‐hydrogen‐nitrogen atmosphere, is used to simulate the meridional distributions of O3, HOX, N2O,NOX, temperature and the three components of mean motion for the summer and winter seasons under steady‐state conditions. The results are generally in good agreement with the available observations in the normal stratosphere. The model has been applied to assess the effects of water vapour and nitrogen oxide perturbations resulting from aircraft emissions in the stratosphere. It is found that a fleet of 500 Boeing‐type sst's, flying at 20 km and 45°N in the summer hemisphere and inserting NOx at a rate of 1.8 megatons per year, has the effect of reducing the global total ozone by 14.7%. Similar calculations for 342 Concorde/TU‐114's, cruising at 17 km and injecting NOx at a rate of 0.35 megatons per year, show a global‐average total‐ozone reduction of 1.85%. Although water vapour is considered important, because of its ability to convert NO2 into HNO3, the direct effect on global‐average total‐ozone reduction resulting from the 100% increase in the stratospheric water content is less than 1%. The changes in the chemical structure (HO^NO^), temperature, and mean motions associated with the ozone reduction are also investigated in the case of the 1.8‐megaton‐per‐year NOX perturbation. It is shown that the reduced meridional temperature gradient in the middle and upper stratosphere resulting from the NOx perturbation leads to the weakening of the tropical easterly jet in the summer hemisphere and mid‐latitude westerlies in the winter season.

The sensitivity of the model solutions to an alternate choice of input parameters (diffusion coefficients and solar photodissociation data) is tested and the main deficiency of the model is pointed out.  相似文献   

6.
Measurements of NOx,y were made at Alert, Nunavut, Canada (82.5° N, 62.3° W) during surface layer ozone depletion events. In spring 1998, depletion events were rare and occurred under variable actinic flux, ice fog, and snowfall conditions. NOy changed by less than 10% between normal, partially depleted, and nearly completely depleted ozone air masses. The observation of a diurnal variation in NOx under continuous sunlight supports a source from the snowpack but with rapid conversion to nitrogen reservoirs that are primarily deposited to the surface or airborne ice crystals. It was unclear whether NOx was reduced or enhanced in different stages of the ozone depletion chemistry because of variations in solar and ambient conditions. Because ozone was depleted from 15–20 ppbv to less than 1 ppbv in just over a day in one event it is apparent that the surface source of NOx did not grossly inhibit the removal of ozone. In another case ozone was shown to be destroyed to less than the 0.5 ppbv detection limit of the instrument. However, simple model calculations show that the rate of depletion of ozone and its final steady-state abundance depend sensitively on the strength of the surface source of NOx due to competition from ozone production involving NOx and peroxy radicals. The behavior of the NO/NO2 ratio was qualitatively consistent with enhanced BrO during the period of active ozone destruction. The model is also used to emphasize that the diurnal partitioning of BrOx during ozone depletion events is sensitive to even sub ppbv variations in O3.  相似文献   

7.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

8.
Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia are analyzed to study the spatial and seasonal characteristics of pollution in these regions. Tropospheric column O3 is derived from differential measurements of total column ozone from Total Ozone Mapping Spectrometer (TOMS), and stratospheric column ozone from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS). The tropospheric column NO2 is measured by Global Ozone Monitoring Experiment (GOME). A global chemical and transport model (Model of Ozone and Related Chemical Tracers, version 2; MOZART-2) is applied to analyze and interpret the satellite measurements. The study, which is based on spring, summer, and fall months of 1997 shows generally good agreement between the model and satellite data with respect to seasonal and spatial characteristics of O3 and NO2 fields. The analysis of the model results show that the industrial emission of NOx (NO + NO2) contributes about 50%–80% to tropospheric column NO2 in eastern Asia and about 20%–50% in southeastern Asia. The contribution of industrial emission of NOx to tropospheric column O3 ranges from 10% to 30% in eastern Asia. Biomass burning and lightning NOx emissions have a small effect on tropospheric O3 in central and eastern Asia, but they have a significant impact in southeastern Asia. The varying effects of NOx on tropospheric column ozone are attributed to differences in relative abundance of volatile organic compounds (VOCs) with respect to total nitrogen in the two regions.  相似文献   

9.
The paper presents a coupled chemical-radiative one-dimensional model which is used to assess the steady-state and time-dependent composition and temperature changes in relation to the release in the atmosphere of chemicals such as CO2, N2O, CH4, NO x and chlorofluorocarbons.The model indicates that a doubling in CO2 leads to an increase in temperature of 12.7 K near the stratopause and to an increase in total ozone of 3.3% with a local enhancement of 17% at 40 km altitude. Additional release of N2O leads to an ozone reduction in the middle stratosphere. The reduction in the ozone column is predicted to be equal to 8.8% when the amount of N2O is doubled. The chemical effect of CH4 on ozone is particularly important in the troposphere. A doubling in the mixing ratio of this gas enhances the O3 concentration by 11% at 5 km. The predicted increase of the ozone column is equal to 1.4%. A constant emission of CFCl3 (230 kT/yr) and CF2Cl2 (300 kT/yr) leads to a steady-state reduction in the ozone column of 1.9% compared to the present-day situation. The effect of some uncertainties in the chemical scheme as well as the impact of a high chlorine perturbation are briefly discussed.Finally the results of a time dependent calculation assuming a realistic scenario for the emission of chemical species are presented and analyzed.  相似文献   

10.
Abstract

We describe a one‐dimensional (1‐D) numerical model developed to simulate the chemistry of minor constituents in the stratosphere. The model incorporates most of the chemical species presently found in the upper atmosphere and has been used to investigate the effect of increasing chlorofluorocarbon (CFC) emissions on ozone (O3).

Our calculations confirm previous results that O3 depletions in the 20–25 km region, the region of the O3 maximum, are very sensitive to the relative abundances of Clx and NOy in the lower stratosphere for high Clx amounts. The individual abundances of lower stratospheric Clx and NOy amounts are very sensitive to upper tropospheric mixing ratios, which, in turn, are determined largely by surface input fluxes and heterogeneous loss processes. Thus the behaviour of column O3 depletions at high Clx levels is greatly affected, albeit indirectly, by tropospheric processes. For high Clx levels the Ox flux from the stratosphere to the troposphere is dramatically reduced, leading to a large reduction in tropospheric O3. Some of the variation between different published 1‐D model results is most likely due to this critical dependence of O3 depletion on NOy‐Clx ratios.

Model simulations of time‐dependent CFC effects on ozone indicate that if CFCs were to remain at constant 1980 emission rates while N2O increased at 0.25% a?1 and CH4 increased at 1% a?1, we could expect a 2.2% decrease in total column O3 (relative to the 1980 atmosphere) by the year 2000. However, if CFC emission rates were to increase by 3% a?1 (current estimates are 5–6% a?1), we would predict a depletion of 2.7% by the year 2000. The calculations for times beyond the year 2000 suggest that the effects on total O3 will begin to accelerate. If methyl chloroform emissions are added at 7% a?1 (current estimates are 7–9% a?1) to the above CFC‐N2O‐CH4 scenario we calculate total O3 depletions by the year 2000 that are 41% larger than those calculated without. This suggests that if the emissions of methyl chloroform continue to increase at their present rate then methyl chloroform could have a significant effect upon total O3.  相似文献   

11.
A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined greenhouse effect of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.  相似文献   

12.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO x ) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO x is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO x emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations.  相似文献   

13.
The ozone forming potential of VOCs and NOx for plumes observed from several cities and a power plant in eastern Germany was investigated. A closed box model with a gas phase photochemical reaction mechanism was employed to simulate several scenarios based upon aircraft observations. In several of the scenarios, the initial concentrations of NOx, VOCs, and SO2, were reduced to study the factors limiting the O3 production. Ozone production was limited by the initial VOC concentrations for all of the simulated plumes. Higher O3 concentrations were produced with reduced initial NOx. In one sample with high SO2 mixing ratios (>100 ppb), SO2 was also identified as a significant contributor to the production of O3.  相似文献   

14.
We have used a two dimensional radiative-chemical-transport model of the stratosphere to investigate the sensitivity of trace gas distributions to absorption of oxygen in the wavelength region 175–210 nm. Two different formulations for the Herzberg continuum absorption cross sections are used. The calculated transmission of ultra-violet light in the stratosphere is lower and higher than observed, depending on the choice of absorption cross section. For the higher transmission O3, ClO, and HO2 are found to be significantly increased in the lower stratosphere. Calculated O3 in the upper stratosphere, chlorofluorocarbons, N2O and odd-nitrogen are lower. The photolysis of oxygen is considerably faster at high latitudes implying that the photochemical recovery of depleted polar ozone is faster than currently assumed.  相似文献   

15.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

16.
南京地区大气颗粒物影响近地面臭氧的个例研究   总被引:4,自引:0,他引:4  
通过对2008年4月2~7日南京地区地面气象观测数据以及两个站点空气质量(O3、NOx、PM10)监测资料的分析, 发现O3和PM10之间存在一定程度的反相关。利用一个光化学箱模式对该个例中大气颗粒物影响近地面臭氧的过程进行模拟, 结果发现大气颗粒物浓度的升高使得气溶胶光学厚度增加20%~40%, 导致NO2和O3近地面光解率下降20%~30%, OH和HO2自由基浓度分别减少20%~50%, 造成O3净生成率下降30%~40%。研究表明, 颗粒物对光化学过程的抑制造成了大气氧化能力的降低, 是近地面臭氧浓度减少的可能原因。  相似文献   

17.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

18.
An updated version of the Regional Acid Deposition Model(RADM)driven by meteorologicalfields derived from Chinese Regional Climate Model(CRegCM)is used to simulate seasonal variationof tropospheric ozone over the eastern China.The results show that:(1)Peak O_3 concentration moves from south China to north China responding to the changing ofsolar perpendicular incidence point from south to north.When solar perpendicular incidence pointmoves from north to south,so does the peak O_3 concentration.(2)In the eastern China.the highest O_3 month-average concentration appears in July.thelowest in January and the medium in April and October.The pattern mainly depends on the solarradiation,the concentration of O_3 precursors NO_x and NMHC and the ratio of NMHC/NO_x.(3)Daily variations of O_3 over the eastern China are clear.Namely,O_3 concentrations rise withthe sun rising and the maximums appear at noon.then O_3 concentrations decrease.The highest dailyvariation range of O_3 appears in summer(40×10~(-9) in volume fraction)and the lowest in winter(20×10~(-9) in volume fraction).(4)Daily variations of O_3 over the western China are not clear.The daily variation range of O_3 isless than 10×10~(-9) in volume fraction.  相似文献   

19.
High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2,RO2) radicals (ROx =OH + HO2 + RO2) and the ozone production rate [P(O3)],but few studies have investigated this possibility,particularly with three-dimensional air quality models.We added diagnostic variables into the WRF-Chem model to assess the impact of the uncertainty in anthropogenic NMVOC (AVOC) emissions on the ROx budget and P(O3) in the Beijing-Tianjin-Hebei region,Yangtze River Delta,and Pearl River Delta of China.The WRF-Chem simulations were compared with satellite and ground observations,and previous observation-based model studies.Results indicated that 68% increases (decreases) in AVOC emissions produced 4%-280% increases (2%-80% decreases) in the concentrations of OH,HO2,and RO2 in the three regions,and resulted in 35%-48% enhancements (26%-39% reductions) in the primary ROx production and ~ 65% decreases (68%-73% increases) of the P(O3) in Beijing,Shanghai,and Guangzhou.For the three cities,the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO,ALD2,and others; the reaction of OH + NO2 (71%-85%) was the major ROx sink; and the major contributor to P(O3) was the reaction of HO2 + NO (~ 65%).Our results showed that AVOC emissions in 2006 from Zhang et al.(2009) have been underestimated by ~ 68% in suburban areas and by > 68% in urban areas,implying that daily and hourly concentrations of secondary organic aerosols and inorganic aerosols could be substantially underestimated,and cloud condensation nuclei could be underestimated,whereas local and regional radiation was overestimated.  相似文献   

20.
近年来武汉市臭氧污染日益严峻,成为影响空气质量达标的瓶颈,弄清臭氧及其前体物非线性关系是臭氧防控的关键和基础.本研究基于武汉中心城区2018年4—9月臭氧及其前体物在线观测数据,分析出武汉市臭氧浓度受前体物和气象条件等因素的共同影响,呈较为明显的季节变化和日变化特征.观测期间武汉市大气挥发性有机物(VOCs)平均体积分数为32.5×10-9,烷烃是武汉市VOCs的主要组分,其次是含氧VOCs (OVOCs)和卤代烃.利用基于观测的模型定量分析臭氧与前体物之间的关系,发现削减VOCs会引起臭氧生成潜势的显著下降,而削减氮氧化物则会使臭氧生成潜势升高,说明武汉市臭氧生成处于VOCs控制区.在人为源VOCs中,间/对二甲苯和邻二甲苯的相对增量反应活性(RIR)最高,是影响臭氧生成的关键组分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号