首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+.  相似文献   

2.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

3.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

4.
High-pressure, low-temperature metamorphic Mn-rich quartzites from Andros and Evvia (Euboea) islands, Greece, situated in the Eocene blueschist belt of the Hellenides, reveal different Mn-Al-Ca-Mg-silicate assemblages in response to variable metamorphic grade. On Evvia, piemontite- and/or braunite-rich quartzites which are associated with low-grade blueschists (T<400° C, P> 8 kbar) show the principle mineral assemblage quartz + montite + sursassite + braunite + Mg-chlorite + hematite + rutile + titanite. The Mn-Al-silicate sursassite, basically (Mn2+, Ca)4 Al2(Al, Fe3+, Mn3+, Mg)4Si6O21(OH)7, thus far reported as a rare mineral, locally occurs as a rockforming mineral in cm- to m-thick layers. On Andros, higher-grade quartzites (T450–500° C, P>10 kbar) of similar composition contain the assemblage quartz + piemontite + spessartine + braunite + Mg-chlorite+hematite + phengite+ phlogopite + rutile. Rare sursassite is present only as a relict phase. Additional, mostly accessory minerals in quartzites from Evvia and Andros are ardennite, Na-amphibole, acmitic clinopyroxene, albite, apatite, and tourmaline. The chemical composition of the main phases is characterized in detail.Disequilibrium textures and mineral compositions in some samples from Andros and Evvia imply the reactions sursassite + braunite + quartz = spessartine+clinochlore±hematite + H2O + O2 (1) sursassite + braunite + phengite + quartz = spessartine + phlogopite±hematite + H2O + O2 (2) and in braunite-free assemblages sursassite + Mn3+Fe –1 3+ [hematite, piemontite] + hematite + quartz = spessartine + clinochlore + H2O+O2 (3) Reactions (1) to (3) have positive P-T slopes. They are considered to account for the breakdown of sursassite and the formation of spessartine during prograde metamorphism of the piemontite quartzites and related rocks. P-T data from Andros and Evvia and geological data from few other occurrences reported suggest sursassite+ quartz±braunite to be stable at T<400–450° C over a considerable pressure interval at least up to 10 kbar. Theoretical phase relations among Mn3+-Mn2+-silicates in the pseudoquaternary system Al-Mn-Ca-Mg with excess quartz, H2O, and O2 indicate that low-grade assemblages containing sursassite (±braunite±pumpellyite±viridine±piemontite + quartz) are likely precursors of higher-grade assemblages including spessartine, Mg-chlorite, braunite, viridine, and piemontite reported from greenschist-, amphibolite-, and high-grade blueschist-facies rocks of appropriate composition.  相似文献   

5.
Arsenic(V), as the arsenate (AsO4)3− ion and its conjugate acids, is strongly sorbed to iron(III) oxides (α-Fe2O3), oxide hydroxides (α-,γ-FeOOH) and poorly crystalline ferrihydrite (hydrous ferric oxide). The mechanism by which arsenate complexes with iron oxide hydroxide surfaces is not fully understood. There is clear evidence for inner sphere complexation but the nature of the surface complexes is controversial. Possible surface complexes between AsO4 tetrahedra and surface FeO6 polyhedra include bidentate corner-sharing (2C), bidentate edge-sharing (2E) and monodentate corner-sharing (1V). We predicted the relative energies and geometries of AsO4-FeOOH surface complexes using density functional theory calculations on analogue Fe2(OH)2(H2O)nAsO2(OH)23+ and Fe2(OH)2(H2O)nAsO4+ clusters. The bidentate corner-sharing complex is predicted to be substantially (55 kJ/mole) more favored energetically over the hypothetical edge-sharing bidentate complex. The monodentate corner-sharing (1V) complex is very unstable. We measured EXAFS spectra of 0.3 wt. % (AsO4)3− sorbed to hematite (α-Fe2O3), goethite(α-FeOOH), lepidocrocite(γ-FeOOH) and ferrihydrite and fit the EXAFS directly with multiple scattering. The phase-shift-corrected Fourier transforms of the EXAFS spectra show peaks near 2.85 and 3.26 Å that have been attributed by previous investigators to result from 2E and 2C complexes. However, we show that the peak near 2.85 Å appears to result from As-O-O-As multiple scattering and not from As-Fe backscatter. The observed 3.26 Å As-Fe distance agrees with that predicted for the bidentate corner-sharing surface (2C) complex. We find no evidence for monodentate (1V) complexes; this agrees with the predicted high energies of such complexes.  相似文献   

6.
The mechanism of thermally induced oxidation of Fe2+ from natural pyrope has been studied at 1000 and 1100 °C using 57Fe Mössbauer spectroscopy in conjunction with XRD, XRF, AFM, QELS, TG, DTA and electron microprobe analyses. At 1000 °C, the non-destructive oxidation of Fe2+ in air includes the partial stabilization of Fe3+ in the dodecahedral 24c position of the garnet structure and the simultaneous formation of hematite particles (15–20 nm). The incorporation of the magnesium ions to the hematite structure results in the suppression of the Morin transition temperature to below 20 K. The general garnet structure is preserved during the redox process at 1000 °C, in accordance with XRD and DTA data. At 1100 °C, however, oxidative conversion of pyrope to the mixed magnesium aluminium iron oxide, Fe-orthoenstatite and cristoballite was observed. During this destructive decomposition, Fe2+ is predominantly oxidized and incorporated into the spinel structure of Mg(Al,Fe)2O4 and partially stabilized in the structure of orthoenstatite, (Mg,Fe)SiO3. The combination of XRD and Mössbauer data suggest the definite reaction mechanism prevailing, including the refinement of the chemical composition and quantification of the reaction products. The reaction mechanism indicates that the respective distribution of Fe2+and Fe3+ to the enstatite and spinel structures is determined by the total content of Fe2+ in pyrope.  相似文献   

7.
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH)6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe2(OH)2(H2O)8Cu(OH)4and Fe3(OH)4(H2O)10Cu2(OH)6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO4Hn)n−6 and Fe(O,OH)6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH)2. Having identified the bidentate (FeOH)2Cu(OH)20 and tridentate (Fe3O(OH)2)Cu2(OH)30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions
  相似文献   

8.
Phase relations for the bulk compositions of the celadonites between the MgAl, MgFe3+ and Fe2+Fe3+ types (celadonite = KR2+R3+ Si4O10 (OH)2) under magnetite-iron and nickel-nickel oxide solid-fluid buffers indicate the extent of solid solution possible in this potassic mica series at temperatures between 300° and 430° C at 2 Kb total pressure. Other possible combinations of Mg, Al, Fe ions in octahedrally coordinated sites did not produce single-phase mica products. The ferrous celadonite micas are stable only under oxygen fugacities where magnetite is the stable oxide—where both Fe2+ and Fe3+ can coexist. However the celadonite with the highest thermal stability at 2 Kb total pressure, nickel-nickel oxide buffer conditions is the KMgFe3+Si4O10(OH)2 phase which is stable up to 420°C, well into low grade metamorphic conditions. It is thus apparent that the presence of celadonite or glauconite mica will not be indicative of changing diagenetic conditions.  相似文献   

9.
Summary Recently several natural and artificial ferric iron sulphate crystal structures have been solved. Sideronatrite, Na2Fe3+(SO4)2(OH)·3H2O, does not provide good crystals for structural purposes. However if we examine crystallographic, chemical and physical data some useful information about the ...Fe–O–S... structural topology can be inferred. In fact this analysis strengthens the hypothesis that there is a {Fe 2 3+ (SO4)4(OH)2} chain in sideronatrite like that found in guildite, Cu2+Fe3+(SO4)2(OH)·4H2O.
Sideronatrit: Ein Mineral mit einer {Fe2(SO4)4(OH)2}-Kette vom Typ Guildit?
Zusammenfassung Kürzlich wurden die Kristallstrukturen mehrerer natürlicher und künstlicher Ferrisulfate gelöst. Sideronatrit, Na2Fe3+(SO4)2(OH)·3H2O, liefert keine für die Strukturuntersuchung gut geeigneten Kristalle. Dennoch erhält man aus der Untersuchung der kristallographischen, chemischen und physikalischen Daten nützliche Information über die ...Fe–O–S...-Topologie der Struktur. Eine solche Analyse spricht für die Hypothese, daß der Sideronatrit eine {Fe 2 3+ (SO4)4(OH2)}-Kette enthält, wie sie im Guildit, Cu2+Fe3+(SO4)2(OH)·4H2O, gefunden wurde.


With 1 Figure

Paper presented at the Sixth European Crystallographic Meeting. Barcelona, Spain 1980.  相似文献   

10.
The investigation of the NH3 loss in the NH4+-vermiculite (Santa Olalla) by thermogravimetry, evolved gas analysis, chemical analysis, X-ray diffraction and IR spectroscopy is reported here. The mass loss during heating takes place in two steps at about 650 and 825 °C. Additionally, the releases of H2O and NH3 occurs simultaneously. The experimental results indicate that the protons remaining in the interlayer space after NH3 removal trigger the H2O release. X-ray diffraction shows that during the decomposition of NH4+-vermiculite there are two domains with different interlayer spaces at ~9 and ~10 Å. As the decomposition proceeds, the intensity of the 9 Å peak increases at the expense of the second one. The change in the IR-stretching modes of the structural OH groups during heating indicates that the OH groups surrounded by 3Mg2+ or 2Mg2+Fe2+ are released at lower temperatures than those with environments like 2Mg2+Fe3+, 2Mg2+Al3+ or more complex ones.  相似文献   

11.
Ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH) shows two magnetic phase transitions, which have been studied by Mössbauer spectroscopy within the temperature range 120–4 K. The continued charge localization between Fe2+ and Fe3+ ions in octahedral A-sites causes the Fe2+-Fe3+ interaction to be ferromagnetic, although the overall magnetic order is antiferromagnetic. The thermal evolution of the hyperfine fields at the Fe2+ (A) and Fe3+ (A) sites indicates B hf: 328 and 523 kOe respectively at 0 K and T N1= 116K. The corresponding values for Fe2+ (B) site are: B hf 186 kOe and T N2=36K. An additional hyperfine field exists at the Fe2+(B) site within the temperature range 116–36K due to short-range order induced by the spin ordering in A sites. The considerable difference between the two magnetic transition temperatures is due to spin frustration, because the Fe2+ (B) site occurs on a corner common between two triangles with respect to two sets of Fe2+ (A) and Fe3+ (A) sites with opposite spin directions.  相似文献   

12.
Pure-iron end-member hibbingite, Fe2(OH)3Cl(s), may be important to geological repositories in salt formations, as it may be a dominant corrosion product of steel waste canisters in an anoxic environment in Na–Cl- and Na–Mg–Cl-dominated brines. In this study, the solubility of Fe2(OH)3Cl(s), the pure-iron end-member of hibbingite (FeII, Mg)2(OH)3Cl(s), and Fe(OH)2(s) in 0.04 m to 6 m NaCl brines has been determined. For the reactionFe2(OH)3Cl(s) + 3H+ ? 3 H2O + 2 Fe2+ + Cl?,the solubility constant of Fe2(OH)3Cl(s) at infinite dilution and 25 °C has been found to be log10 K = 17.12 ± 0.15 (95% confidence interval using F statistics for 36 data points and 3 parameters). For the reactionFe(OH)2(s) + 2H+ ? 2 H2O + Fe2+,the solubility constant of Fe(OH)2 at infinite dilution and 25 °C has been found to be log10 K = 12.95 ± 0.13 (95 % confidence interval using F statistics for 36 data points and 3 parameters). For the combined set of solubility data for Fe2(OH)3Cl(s) and Fe(OH)2(s), the Na+–Fe2+ pair Pitzer interaction parameter θNa+/Fe2+ has been found to be 0.08 ± 0.03 (95% confidence interval using F statistics for 36 data points and 3 parameters). In nearly saturated NaCl brine we observed evidence for the conversion of Fe(OH)2(s) to Fe2(OH)3Cl(s). Additionally, when Fe2(OH)3Cl(s) was added to sodium sulfate brines, the formation of green rust(II) sulfate was observed, along with the generation of hydrogen gas. The results presented here provide insight into understanding and modeling the geochemistry and performance assessment of nuclear waste repositories in salt formations.  相似文献   

13.
Thirty spodumene samples of distinct paragenetic types (primary magmatic, secondary after petalite and hydrothermal) from variety of granitic pegmatites were characterized by electron microprobe, polarized FTIR spectroscopy and Mössbauer spectroscopy. The FTIR spectra of OH (weak sharp pleochroic bands at 3,425, 3,410, 3,395 cm−1 and in the 3,500–3,470 spectral region) are strongly polarized with maximum absorption parallel to nγ. The majority of OH dipoles are presumably generated by a partial replacement of O2 oxygen atoms with an orientation pointing above the Li vacancy site. The separation of the bands probably resulted from a replacement of the coordinating Al by Fe and Si by Al. Homogeneous spodumene mostly close to its ideal formula LiAlSi2O6 shows Fe (0.00–0.10 apfu as Fe3+; Fe3+ >> Fe2+) and Na (0.00–0.04 apfu) as the only minor cations and Fe3+Al−1 substitution up to 10 mol% of the LiFe3+Si2O6 component. Hydrogen concentrations (from 0.1 up to <5 ppm H2O by weight) vary as a function of genetic type with the highest amounts in high-temperature magmatic spodumene. Differences among particular genetic types of spodumene are related to maximum solubility of OH in spodumene structure at given PT conditions and at actual chemical composition of spodumene. OH defect concentrations in spodumene follow a trend, LT/LP pyroxenes containing lower hydrogen contents compared to HT/HP ones. The hydrogen contents in particular genetic types of spodumene and their decrease with decreasing T and P are consistent with petrologic models of the pegmatite (sub)types formations.  相似文献   

14.
Chemical composition, unit cell parameters, and trace elements of tourmalines from Mesozoic gold-quartz-sulphide and gold-bearing copper-porphyry ore-magmatic systems of the Trans-Baikal area and Mongolia show that they belong to the specific schorl-dravite highly ferruginous oxytourmaline series. They are low in alumina (Al2O3 = 16–33%) and have MgO contents (up to 10%) and Fe2O3 (1%). There is a direct correlation of unit cell parameters (a,c,V) with total iron, which permits composition estimates from X-ray diffraction analyses. As a rule, these tourmalines contain high concentrations of Au, Pb and Cu, which are mainly hosted by inclusions of native gold and ore minerals. The highest As abundances are contained in the tourmalines of the copper-porphyry field.Two trends of isomorphic replacement are related to increasing Fe content of oxyferruginous tourmalines:(1) “Acid leaching” trend (less ferruginous part of the series) Mg + Fe2+ + 4Al + 40 4Fe3+ + 2 + 4(OH,F); and (2) “conjugate deposition” trend Mg + 1.5Fe2+ + 1.5Al + 4(OH,F) 4Fe3+ + 4O.These features distinguish tourmalines from gold-bearing systems from schorl-dravites of tin and rare-metal deposits. They may be used in metallogenic analyses, interpretation of the origin of primary and secondary anomalies, and assessment of the type and zonation of ore fields.  相似文献   

15.
Summary Anandite has an approximate formula of Ba(Fe3+, Fe2+)3[Si2(Fe3+, Fe2+, Si)2O10–x(OH)x] (S, Cl) (OH), withx=0–1, and belongs to the 2 O brittle mica group. It is orthorhombic; space groupPnmn;a=5.468(9) Å,b=9.489(18)Å,c=19.963(11) Å;Z=4.The structure was determined from 3dim. Weissenberg-data, starting with an approximate structure in the pseudo space groupCcmm. Least squares refinement resulted inR=0.061 for 409 photometric intensities, andR=0.131 for all 853 observedhkl-reflexions.The iron of the tetrahedral layer is concentrated in one of the two crystallographically different kinds of tetrahedra. The basal oxygen rings of the tetrahedral layer form approximate hexagons and have not the ditrigonal configuration of the common micas. This peculiarity is considered to be a consequence of the size and charge of the barium ion. The role of OH in the common micas is played partly by S2– and Cl in anandite.
Die Kristallstruktur des 2 O Sprödglimmers Anandit
Zusammenfassung Anandit hat die ungefähre Formel Ba(Fe3+, Fe2+)3[Si2(Fe3+, Fe2+, Si)2O10–x(OH)x] (S, Cl) (OH) mitx=0–1 und gehört zur 2O Sprödglimmergruppe. Er ist rhombisch; RaumgruppePnmn; a=5,468(9) Å,b=9,489(18) Å,c=19,963(11) Å;Z=4.Die Struktur wurde aus Weissenberg-Daten bestimmt, wobei mit einer approximativen Struktur in der PseudoraumpruppeCcmm begonnen wurde. Die Verfeinerung nach der Methode der kleinsten Quadrate führte für 409 photometrierte Reflexe aufR=0,061 und für alle 853 beobachtetenhkl-Reflexe aufR=0,131.Der Eisengehalt der Tetraederschicht ist in einer der beiden kristallographisch verschiedenen Tetraederarten konzentriert. Die basalen Sauerstoffringe der Tetraederschicht bilden annäherungsweise Sechsecke und haben nicht die ditrigonale Konfiguration der gewöhnlichen Glimmer. In Anandit spielen S2– und Cl teilweise die Rolle der Hydroxylgruppen in den gewöhnlichen Glimmern.


With 4 Figures  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):3417-3427
In order to verify Fe control by solution - mineral equilibria, soil solutions were sampled in hydromorphic soils on granites and shales, where the occurrence of Green Rusts had been demonstrated by Mössbauer and Raman spectroscopies. Eh and pH were measured in situ, and Fe(II) analyzed by colorimetry. Ionic Activity Products were computed from aqueous Fe(II) rather than total Fe in an attempt to avoid overestimation by including colloidal particles. Solid phases considered are Fe(II) and Fe(III) hydroxides and oxides, and the Green Rusts whose general formula is [FeII1−xFeIIIx(OH)2]+x· [x/z A−z]−x, where compensating interlayer anions, A, can be Cl, SO42−, CO32− or OH, and where x ranges a priori from 0 to 1. In large ranges of variation of pH, pe and Fe(II) concentration, soil solutions are (i) oversaturated with respect to Fe(III) oxides; (ii) undersaturated with respect to Fe(II) oxides, chloride-, sulphate- and carbonate-Green Rusts; (iii) in equilibrium with hydroxy-Green Rusts, i.e., Fe(II)-Fe(III) mixed hydroxides. The ratios, x = Fe(III)/Fet, derived from the best fits for equilibrium between minerals and soil solutions are 1/3, 1/2 and 2/3, depending on the sampling site, and are in every case identical to the same ratios directly measured by Mössbauer spectroscopy. This implies reversible equilibrium between Green Rust and solution. Solubility products are proposed for the various hydroxy-Green Rusts as follows: log Ksp = 28.2 ± 0.8 for the reaction Fe3(OH)7 + e + 7 H+ = 3 Fe2+ + 7 H2O; log Ksp = 25.4 ± 0.7 for the reaction Fe2(OH)5 + e + 5 H+ = 2 Fe2+ + 5 H2O; log Ksp = 45.8 ± 0.9 for the reaction Fe3(OH)8 + 2e + 8 H+ = 3 Fe2+ + 8 H2O at an average temperature of 9 ± 1°C, and 1 atm. pressure. Tentative values for the Gibbs free energies of formation of hydroxy-Green Rusts obtained are: ΔfG° (Fe3(OH)7, cr, 282.15 K) = −1799.7 ± 6 kJ mol−1, ΔfG° (Fe2(OH)5, cr, 282.15 K) = −1244.1 ± 6 kJ mol−1 and ΔfG° (Fe3(OH)8, cr, 282.15 K) = −1944.3 ± 6 kJ mol−1.  相似文献   

17.
Abstract Chemical analysis (including H2, F2, FeO, Fe2O3) of a Mg-vesuvianite from Georgetown, Calif., USA, yields a formula, Ca18.92Mg1.88Fe3+0.40Al10.97Si17.81- O69.0.1(OH)8.84F0.14, in good agreement on a cation basis with the analysis reported by Pabst (1936). X-ray and electron diffraction reveal sharp reflections violating the space group P4/nnc as consistent with domains having space groups P4/n and P4nc. Refinement of the average crystal structure in space group P4/nnc is consistent with occupancy of the A site with Al, of the half-occupied B site by 0.8 Mg and 0.2 Fe, of the half-occupied C site by Ca, of the Ca (1,2,3) sites by Ca, and the OH and O(10) sites by OH and O. We infer an idealized formula for Mg-vesuvianite to be Ca19Mg(MgAl7)Al4Si18O69(OH)9, which is related to Fe3+-vesuvianite by the substitutions Mg + OH = Fe3++ O in the B and O(10) sites and Fe3+= Al in the AlFe site. Thermodynamic calculations using this formula for Mg-vesuvianite are consistent with the phase equilibria of Hochella, Liou, Keskinen & Kim (1982) but inconsistent with those of Olesch (1978). Further work is needed in determining the composition and entropy of synthetic vs natural vesuvianite before quantitative phase equilibria can be dependably generated. A qualitative analysis of reactions in the system CaO-MgO-Al2O3-SiO2-H2O-CO2 shows that assemblages with Mg-vesuvianite are stable to high T in the absence of quartz and require water-rich conditions (XH2O > 0.8). In the presence of wollastonite, Mg-vesuvianite requires very water-rich conditions (XH2O > 0.97).  相似文献   

18.
The temperature dependence of the absorption spectra of ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH), shows strongly one dimensional transport behaviour with no singularity at the Pnam-P21/a phase transition point near 335 K. Polarized single crystal transmission measurements were carried out between 300 K and 450 K in a frequency range between 600 and 23 000 cm−1. No Drude —absorption at low energies was found at any temperature. A macroscopic, thermodynamic model based on Landau-Ginzburg theory is given which accounts for the observed macroscopic properties of the structural phase transition and its coupling with the Fe2+-Fe3+ ordering. This ordering scheme is discussed on an atomistic level and compared with the behaviour of magnetite and trans-(CH) x .  相似文献   

19.
Summary The crystal structure of sigloite, Fe3 [(H2O)3OH] [Al2(PO4)2(OH)2(H2O)2]- 2 H2O, triclinic, a 5.190 (2), b 10.419 (4), c 7.033 (3) Å, 105.00 (3), 111.31(3), 70.87 (3)°, V 330.5 (2) Å3, Z = 1, space group P , has been refined to anR index of 5.3% using 1713 observed (I > 2.5 1) reflections collected with graphite-monochromated MoK X-rays. Sigloite is isostructural with the laueite-group minerals. Corner-linked [A15] chains (: unspecified ligand) are cross-linked by (PO4) tetrahedra to form a mixed corner-linked tetrahedral-octahedral sheet of composition [A12(PO4)2(OH)2(H2O)2]2-. These sheets are linked by (Fe3+O2(OH, H2O)4) octahedra and two (H2O) groups that participate in a hydrogen-bonding network. Sigloite is the oxidized equivalent of paravauxite, Fe2+(H2O)4[Al2(PO4)2(OH)2(H2O)2]-2 H2O, and detailed comparison of the two structures shows that the oxidation mechanism involves loss of hydrogen from one of the (H2O) groups coordinating the Fe3+, and positional disorder of both the Fe3+ and (OH) and (H2O) ligands.
Siggloit: Der Oxidationsmechanismus in (M 2 3 + (PO4)2(OH)2(H2O)2]2- Strukturen
Zusammenfassung Die Kristallstruktur von Sigloit, Fe3+ [(H2O)3OH] [Al2(PO4)2(OH)2(H2O)2].2 H2O, triklin, a 5,190 (2), b 10,419 (4), c 7,033 (3) Å, 105,00 (3), 111,31 (3), 70,87 (3)°, V 330,5 (2) Å3,Z = 1, Raumgruppe P , wurdefür 1713 beobachtete Reflexe (I > 2,5 I), die mit MoKa-Röntgenstrahlung (Graphit-Monochromator) gesammelt wurden, auf einen R-Wert von 5,3% verfeinert. Sigloit ist isotyp mit den Mineralen deer Laueit-Gruppe. Über Ecken verknüpfte [A15]-Ketten (: nicht spezifizierter Ligand) werden über (P04)-Tetraeder zu ebenfalls über Ecken verknüpfte Tetraeder-OktaederSchichten der Zusammensetzung [A12(PO4)2(OH)2(H2O)2]2- verbunden. Diese Schichten werden über (Fe3+O2(OH, H2O)4)-Oktaeder und zwei (H2O)-Gruppen, die amWasserstoffbrücken-Netzwerk beteiligt sind, verbunden. Sigloit ist das oxidierte Analogon zu Paravauxit, Fe2+(H2O)4[A12(PO4)2(OH)2(H2O)2] - 2 H2O; ein detaillierter Vergleich dieser beiden Strukturen zeigt, daß der Oxidationsmechanismus sowohl den Verlust eines Wasserstoffatoms (H2O)-Gruppe, welche ein Fe3+-Atom koordiniert, als auch eine Fehlordnung der Punktlagen von Fe3+ und von den (OH) und (H2O) Liganden bedingt.
  相似文献   

20.
Evidence for a simple pathway to maghemite in Earth and Mars soils   总被引:1,自引:0,他引:1  
Soil magnetism is greatly influenced by maghemite (γ-Fe2O3), the presence of which is usually attributed to the following: (1) heating of goethite in the presence of organic matter; (2) oxidation of magnetite (Fe3O4); or (3) dehydroxylation of lepidocrocite (γ-FeOOH). Formation of the latter two minerals in turn requires the presence of Fe(II) in the system. No laboratory experiment or soil study to date has shown whether maghemite can form from ferrihydrite, a poorly crystalline Fe(III) oxide [∼Fe4.5(O,OH,H2O)13.5], below 250°C. However, ferrihydrite is the usual precursor of goethite (α-FeOOH) and hematite (α-Fe2O3), the most frequently occurring crystalline Fe(III) oxides in soils. Here is presented in vitro evidence that ferryhidrite can partly transform into maghemite at 150°C. This transformation occurs upon aging of ferrihydrite precipitated in the presence of phosphate or other ligands capable of ligand exchange with Fe-OH surface groups. This maghemite coexists with hematite and is a transient phase in the transformation of ferrihydrite to hematite, which is apparently stabilized by the adsorbed ligands. Its particle size is small (10 to 30 nm), and its X-ray diffraction pattern exhibits superstructure reflections. The possible formation of maghemite in Mars and in different Earth soils can partly be explained in the light of this pathway with minimal ad hoc assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号