首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Marsh creation has come into increasing use as a measure to mitigate loss of valuable wetlands. However, few programs have addressed the functional ecological equivalence of man-made marshes and their natural counterparts. This study addresses structural and functional interactions in a man-made and two natural marshes. This was done by integrating substrate characteristics and marsh utilization by organisms of two trophic levels. Sediment properties, infaunal community composition, andFundulus heteroclitus marsh utilization were compared for a man-madeSpartina salt marsh (between ages 1 to 3 yr) in Dills Creek, North Carolina, and adjacent natural marshes to the east and west. East natural marsh and planted marsh sediment grain-size distributions were more similar to each other than to the west natural marsh due to shared drainage systems, but sediment organic content of the planted marsh was much lower than in either natural marsh. This difference was reflected in macrofaunal composition. Natural marsh sediments were inhabited primarily by subsurface, deposit-feeding oligochaetes whereas planted marsh sediments were dominated by the tube-building, surface-deposit feeding polychaetesStreblospio benedicti andManayunkia aestuarina. Infaunal differences were mirrored inFundulus diets. Natural marsh diets contained more detritus and insects, because oligochaetes, though abundant, were relatively inaccessible. Polychaetes and algae were major constituents of the planted marshFundulus diet. Though naturalmarsh fish may acquire a potentially less nutritive, detritus-based diet relative to the higher animal protein diet of the planted marsh fish,Fundulus abundances were markedly lower in the planted marsh than in the natural marshes, indicating fewer fish were being supported. LowerSpartina stem densities in the planted marsh may have provided inadequate protection from predation or insufficient spawning sites for the fundulids. After three years, the planted marsh remained functionally distinct from the adjacent natural marshes. Mitigation success at Dills Creek could have been improved by increasing tidal flushing, thereby enhancing, access to marine organisms and by mulching withSpartina wrack to increase sediment organic-matter content and porosity. Results from this study indicate that salt marshes should not be treated as a replaceable resource in the short term. The extreme spatial and temporal variability inherent to salt marshes make it virtually impossible to exactly replace a marsh by planting one on another site.  相似文献   

2.
Although top-down control of plant growth has been shown in a variety of marine systems, it is widely thought to be unimportant in salt marshes. Recent caging experiments in Virginia and Georgia have challenged this notion and shown that the dominant marsh grazer (the periwinkle,Littoraria irrorata) not only suppresses plant growth, but can denude marsh substrate at high densities. In these same marshes, our field observations suggest that the black-clawed mud crab,Panopeus herbstii, is an abundant and potentially important top-down determinant of periwinkle density. No studies have quantitatively examinedPanopeus distribution or trophic interactions in marsh systems, and its potential impacts on community structure remained unexplored. We investigated distribution and feeding habits ofPanopeus in eight salt marshes along the Mid-Atlantic seashore (Delaware-North Carolina). We found that mud crabs were abundant in tall (4–82 ind m?2), intermediate (0–15 ind m?2), and short-form (0–5 ind m?2)Spartina alterniflora zones in all marshes and that crab densities were negatively correlated with tidal height and positively correlated with bivalve density. Excavation of crab lairs r?utinely produced shells of plant-grazing snails (up to 36 lair?1) and bivalves. Lab experiments confirmed that mud crabs readily consume these abundant marsh molluscs. To experimentally examine potential community effects of observed predation patterns, we manipulated crab and periwinkle densities in a 1-mo field experiment. Results showed thatPanopeus can suppress gastropod abundance and that predation rates increase with increasing snail density. In turn, crab suppression of snail density reduces grazing intensity on salt marsh cordgrass, suggesting presence of a trophic cascade. These results indicate that this previously under-appreciated consumer is an important and indirect determinant of community structure and contribute to a growing body of evidence challenging the long-standing notion that consumers play a minor role in regulating marsh plant growth.  相似文献   

3.
In Louisiana, salt marshes are being created in an effort to offset the large loss of such habitat that has occurred over the last 50 yr. Primary productivity is an important function and indicator of success for salt marsh creation and restoration projects. The aim of this study was to determine whether the aboveground and belowground productivity of the dominant salt marsh grassSpartina alterniflora in created marshes in southwest Louisiana began to approximate productivity levels in natural marshes, over time. Net annual aboveground primary productivity (NAPP) was measured by a harvest technique, while the ingrowth core method was used to estimate net annual belowground primary productivity (NBPP). NAPP levels were similar to those found in other, Louisiana salt marshes, while NBPP levels were similar to or higher than the reported range forS. alterniflora studied along the Atlantic and Gulf of Mexico coasts. NAPP tended to decrease as the created marshes aged, but the levels in the oldest, 19 year old, created marsh were still well above values measured in the, natural marshes. It was estimated that it would take 35 yr after marsh creation for NAPP in the created marshes to become equivalent to that in natural marshes. NBPP in the created marshes became equivalent to levels found in the natural marshes after 6–8 yr, but then belowground production increased with marsh age, reaching an asymptote that surpassed natural marsh levels. Equivalency in primary productivity has not been reached in these marshes. Elevation also affected productivity, as higher elevational sites with greater topographic heterogeneity had significantly lower aboveground and belowground biomass levels than those with elevations closer to mean sea level. This underscores the need to construct marshes so that their mean elevation and degree of topographic heterogeneity are similar to natural marshes.  相似文献   

4.
Salt marsh fucoid algae are a conspicuous component of north temperate marshes, yet comparatively little research has been conducted to examine their ecological effects. We examined the influence of salt marsh fucoids on physical conditions and the biotic community in a manipulative experiment conducted in a southern Maine back-barrier salt marsh. The biomass of salt marsh fucoids was higher than that of aboveground Spartina alterniflora in the zone where we conducted the experiment. Average daytime temperatures at the sediment surface were significantly reduced by the presence of salt marsh fucoids. Density and biomass of standing-dead S. alterniflora was significantly higher when salt marsh fucoids were removed. In contrast, the abundance of various species of epifauna and infauna were significantly enhanced by the presence of salt marsh fucoids. A regional survey indicated that results from the study site may be conservative because the biomass of salt marsh fucoids was lowest among other back-barrier marshes. Salt marsh fucoids are little studied ecosystem engineers whose presence affects the microclimate and biotic community, especially the animals that constitute the basal components of the salt marsh trophic relay.  相似文献   

5.
Destruction of tidal wetlands has led to a growing interest in the restoration and creation of new wetland habitat. However, while natural stands of vegetation have been successfully duplicated, less is understood about the establishment of faunal communities in created or restored tidal marshes. Infauna, which may form an important link between detrital production and commercially important finfish and decapods, have received limited attention in vegetated marsh habitats. We examined the infauna, changes in vegetation composition, and selected physical parameters in created marshes of different ages. Infauna were sampled using standard core sampling techniques. Vegetation composition and changes in relative abundance were observed using plot-point techniques. Vegetation plots indicated ongoing replacement ofSpartina alterniflora bySchoenoplectus robustus, a pattern supported by comparisons of vegetation at one of the sites to that reported in a previous study. Infauna exhibited significant differences between sites of different ages, with the intermediate-age site having intermediate densities for several taxa. These results suggest that both infauna and vegetation in created marshes undergo long-term change (ongoing after 10–20 yr), with both the plant and infaunal communities having qualitatively similar overall species composition to natural marsh areas.  相似文献   

6.
Total nitrogen, phosphorus and organic carbon were compared in natural and transplanted estuarine marsh soils (top 30 cm) to assess nutrient storage in transplanted marshes. Soils were sampled in five transplanted marshes ranging in age from 1 to 15 yr and in five nearby natural marshes along the North Carolina coast. Dry weight of macroorganic matter (MOM), soil bulk density, pH, humic matter, and extractable P also were measured. Nutrient pools increased with increasing marsh age and hydroperiod. Nitrogen, phosphorus and organic carbon pools were largest in soils of irregularly flooded natural marshes. The contribution of MOM to marsh nutrient reservoirs was 6–45%, 2–22%, and 1–7% of the carbon, nitrogen and phosphorus, respectively. Rates of nutrient accumulation in transplanted marshes ranged from 2.6–10.0, 0.03–1.10, and 84–218 kmol ha?1yr?1 of nitrogen, phosphorus and organic carbon, respectively. Accumulation rates were greater in the irregularly flooded marshes compared to the regularly flooded marshes. Approximately 11 to 12% and 20% of the net primary production of emergent vegetation was buried in sediments of the regularly flooded and irregularly flooded transplanted marshes, respectively. Macroorganic matter nutrient pools develop rapidly in transplanted marshes and may approximate natural marshes within 15 to 30 yr. However, development of soil carbon, nitrogen and phosphorus reservoirs takes considerably longer.  相似文献   

7.
This paper examines how perennial Aster tripolium and annual Salicornia procumbens salt marshes alter the biomass, density, taxon diversity, and community structure of benthic macrofauna, and also examines the role of elevation, sediment grain size, plant cover, and marsh age. Core samples were collected on a fixed grid on an intertidal flat in the Westerschelde estuary (51.4° N, 4.1° E) over 5 years (2004–2008) of salt marsh development. In unvegetated areas, macrobenthic biomass, density, and taxon diversity were highest when elevation was highest, benthic diatoms were most abundant, and sediment median grain size was smallest. In contrast, in salt marsh areas, macrobenthic biomass and taxon diversity increased with median grain size, while the effects of elevation and diatom abundance on macrobenthic biomass, density, and diversity were not significant. In fine sediments, macrofaunal community structure in the salt marsh was particularly affected; common polychaetes such as Nereis diversicolor, Heteromastus filiformis, and Pygospio elegans had low abundance and oligochaetes had high abundance. Marsh age had a negative influence on the density of macrofauna, and A. tripolium stands had lower macrofaunal densities than the younger S. procumbens stands. There were no significant effects of marsh age, plant cover, and vegetation type on macrobenthic biomass, taxon diversity, and community structure. The results highlight that ecosystem engineering effects of salt marsh plants on macrofauna are conditional. Organic enrichment of the sediment and mechanical hindering of macrofaunal activity by plant roots are proposed as plausible mechanisms for the influence of the salt marsh plants on macrofauna.  相似文献   

8.
Few studies concerning tide-restricted and restoring salt marshes emphasize fishes and decapod crustaceans (nekton) despite their ecological significance. This study quantifies nekton utilization of three New England salt marshes under tide-restricted and restoring conditions (Hatches Harbor, Massachusetts; Sachuest Point and Galilee, Rhode Island). The degree of tidal restriction differed among marshes allowing for an examination of nekton utilization patterns along a gradient of tidal restriction and subsequent restoration. Based on sampling in shallow subtidal creeks and pools, nekton density and richness were significantly lower in the restricted marsh compared to the unrestricted marsh only at the most tide-restricted site (Sachuest Point). The dissimilarity in community composition between the unrestricted and restricted marsh sites increased with more pronounced tidal restriction. The increase in nekton density resulting from tidal restoration was positively related to the increase in tidal range. Species richness only increased with restoration at the most tide-restricted site; no significant change was observed at the other two sites. These patterns suggest that only severe tidal restrictions significantly reduce the habitat value of New England salt marshes for shallow subtidal nekton. This study suggests that the greatest responses by nekton, and the most dramatic shift towards a more natural nekton assemblage, will occur with restoration of severely restricted salt marshes.  相似文献   

9.
This two-part study examined the benthic macrofaunal community in Delaware salt marsh impoundments having partial tidal restriction. The first part compared abundance, diversity, and taxonomic composition in three habitat types in impoundments—creeks, vegetated creek banks, and ponds—to those found in natural marshes. Impoundment effects were present but were habitat-specific. Abundances were higher in natural marsh creeks than in impoundment creeks, and diversities were higher in impoundment ponds than in natural marsh ponds. Vegetated bank communities in impoundments were about 50% insects and arachnids and 50% oligochaetes, while natural bank communities were primarily oligochaetes and the polychaeteManayunkia aestuarina. This is likely due to the decrease in flooding of the vegetated high marsh caused by partial impoundment. Pond and creek community composition also showed impoundment effects: in comparison with natural marshes, impoundments had higher proportions of the burrowing anemoneNematostella vectensis, nemerteans, andTubificoides sp. oligochaetes and lower proportions of the oligochaeteClitellio arenarius. The second part of the study compared benthic macrofauna in an impoundment before, during, and after the water level was lowered so that some bottom sediments were exposed and some covered with just a few centimeters of water for several weeks. During this event, macrofaunal abundances were reduced and the community shifted from being dominated by annelids, anemones, and nemerteans toward one dominated by annelids and insects. About 6 wk after reflooding, persistent effects of this disturbance were still suggested by greatly increased abundances and 96% dominance by one species of oligochaete,Paranais litoralis. Impoundment management plans calling for periods of sediment exposure or very low water may want to consider the potential for strong and persistent effects on the macrofaunal community.  相似文献   

10.
Human population growth and sea-level rise are increasing the demand for protection of coastal property against shoreline erosion. Living shorelines are designed to provide shoreline protection and are constructed or reinforced using natural elements. While living shorelines are gaining popularity with homeowners, their ability to provide ecological services (e.g., habitat provision and trophic transfer) is not well understood, and information is needed to improve coastal and resource management decision-making. We examined benthic community responses to living shorelines in two case-study subestuaries of Chesapeake Bay using a before-after control-impact study design. At Windy Hill, a bulkhead was removed and replaced by three tombolos, sand fill, and native marsh vegetation. At Lynnhaven, 25 m of eroding marsh shoreline was stabilized with coir logs, sand fill, and native marsh vegetation. Communities of large (>?3 mm) infauna adjacent to living shorelines at both locations tended to increase in biomass by the end of the study period. Community compositions changed significantly following living shoreline construction at Windy Hill, reflecting a trend toward higher density and biomass of large bivalves at living shorelines compared to pre-construction. Increasing trends in density and biomass of clams and simultaneously decreasing density and decreasing trends in biomass of polychaetes suggest a transition toward stable infaunal communities at living shorelines over time, though longer-term studies are warranted.  相似文献   

11.
Anthropogenic activities in New England salt marshes have altered hydrologic flows in various ways, but unintended consequences from some types of habitat modifications have received little attention. Specifically, ditches have existed on salt marshes for decades, but the effects of these hydrologic alterations are only poorly understood. Ditch-plugging is a more recent methodology used for salt marsh habitat enhancement and mosquito control, but the long-term effects from this management practice are also unclear. The interactions involving marsh surface elevation, soil characteristics, and hydrologic regimes result in feedbacks that regulate the salt marsh self-maintenance process, and these interactions vary with hydrologic modification. Using natural tidal creeks and pools as controls, we examined the effects of ditching and plugging, respectively, on hydrology, surface elevations, and soils. Results showed the most apparent effects of altered hydrology from ditching are prolonged pore-water retention in the rooting zone and significantly lower soil bulk density and mineral content when compared with natural creek habitat. From a management perspective, the important question is whether the combined alterations to physical and biological processes will hinder the marsh’s ability to keep pace with increasing rates of sea level rise, especially in more heavily ditched marshes. In contrast, ditch-plugging results in the decoupling of feedback processes that promote salt marsh self-maintenance and in doing so, threatens marsh stability and resilience to climate change. High surface water levels, permanently saturated soils, marsh subsidence, and significantly lower bulk density, carbon storage, soil strength, and redox levels associated with hydrologic alterations from ditch-plugging all support this conclusion.  相似文献   

12.
Ecological restoration of salt marshes using plantations may enhance the macroinvertebrate community, but little is known about the development of benthic macroinvertebrates after ecological engineering projects in European salt marshes. This study analyzed the environment and the macroinvertebrate community in European salt marshes 3 years after restoration using Spartina maritima plantations in comparison with non-restored and preserved marshes in Odiel Marshes (Southwest Iberian Peninsula). We hypothesized that planting Spartina maritima on intertidal mudflats would increase species richness and diversity (Shannon–Weaver index) of the benthic macroinvertebrate community by increasing environmental heterogeneity, providing feeding resources and improving sediments characteristics. Benthic macrofauna samples (composed mainly of annelids, crustaceans, and mollusks) were sampled in plots of 20 cm?×?25 cm to 5 cm depth between +1.8 and +3.0 m above Spanish Hydrographic Zero. Sediment organic matter content, bulk density, pH, and redox potential were the variables that best explained macroinvertebrate distribution. Restored marshes achieved similar diversity and even higher specific richness than preserved marshes, although with differences in species composition. Non-restored marshes showed the lowest diversity. Restored and preserved marshes did not differ in total abundance or biomass of macroinvertebrates, both being higher than in non-restored marshes. The macroinvertebrate communities in preserved and non-restored marshes showed the largest difference in taxa composition, with restored marshes occupying an intermediate position. Salt marsh restoration using S. maritima increased the complexity (ecological diversity and species richness) and abundance of the benthic macroinvertebrate community. Our study offers new information about the role of salt marsh plants in mediating faunal communities via ecological engineering projects.  相似文献   

13.
The salt marsh surface is not a homogeneous environment. Rather, it contains a mix of different microhabitats, which vary in elevation, microtopography, and location within the estuarine system. These attributes act in concert with astronomical tides and meteorological and climatological events and result in pulses of tidal flooding. Marsh hydroperiod, the pattern of flooding events, not only controls nekton access to marsh surface habitats directly but may also mediate habitat exploitation through its influence on other factors, such as prey abundance or vegetation stem density. The relative importance of factors affecting marsh hydroperiod differ between the southeast Atlantic and northern Gulf of Mexico coasts. Astronomical tidal forcing is the primary determinant of hydroperiod in Atlantic Coast marshes, whereas predictable tides are often overridden by meteorological events in Gulf Coast marshes. In addition, other factors influencing coastal water levels have a proportionately greater effect on the Gulf Coast. The relatively unpredictable timing of marsh flooding along the Gulf Coast does not seem to limit habitat utilization. Some of the highest densities of nekton reported from salt marshes are from Gulf Coast marshes that are undergoing gradual submergence and fragmentation caused by an accelerated rise in relative sea level. Additional studies of habitat utilization are needed, especially on the Pacific and Atlantic coasts. Investigations should include regional comparisons of similar microhabitats using identical quantitative sampling methods. Controlled field experiments are also needed to elucidate the mechanisms that affect the habitat function of salt marshes.  相似文献   

14.
In situ ingestion rates of some infaunal deposit feeders can be determined without collecting feces by labeling the sediment with fluorescent particles and using these to trace ingested material through the gut of the animals. This technique was applied to the polychaeteNereis succinea and showed that ingestion rate, expressed as material ingested per body weight, increased with temperature and decreased with body size. Total annual ingestion of sediment and detritus for aN. succinea population in a salt marsh near Beaufort, N.C., was estimated to be 5 kg of dry material m?2, more than 4 times that reported for salt marsh epifaunal deposit feeders. *** DIRECT SUPPORT *** A01BY009 00005  相似文献   

15.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

16.
A model for the geomorphic and vegetation development of a river valley tidal marsh in southern New England (Connecticut) is based on both the species composition of roots and rhizomes and on the mineralogic sediments preserved in peat. The maximum depth of salt marsh peat is 3.8 m and in the deepest areas this can overlie up to 1.9 m of fresh to brackish water peat. Based on a radiocarbon date of 3670±140 yr before the present (B.P.) for basal peat at a depth of 4.0 m, vertical accretion rates have averaged ca. 1.1 mm yr?1. Salt marsh formation began in response to rising sea level 3800–4000 yr B.P., as brackish marshes, dominated by bulrush (Scirpus sp.), replaced freshwater wetlands along stream and river channels. Gradually salt marsh vegetation developed over submerging brackish marshes, adjacent uplands, and accreting tidal flats. By 3000 yr B.P. the lower estuary was tidal, with sufficient salinity for salt marsh to dominate most wetlands. Spikegrass (Distichlis spicata) was an important early colonizer in salt marsh formation and its role in marsh development has not been documented previously. Blackgrass (Juncus gerardi), currently a typical upper border species, appears in the peat record relatively recently, perhaps within the last few centuries. In contrast, reed (Phragmites australis) has been present for at least 3500 yr. The dominance of reed along the upper border today, however, appears to be a relatively recent phenomenon.  相似文献   

17.
Two to three thousand years ago, the fringing tidal salt marsh wetlands (including brackish and freshwater marsh) of the Delaware coastal zone were three to four times wider than at present. Observed variations in rates of marsh surface aggradation suggest that some areas are undergoing inundation whereas many other areas are undergoing aggradation at rates greater than sea-level rise as measured by a local tidal gauge (average 33 cm/ century based on a 70-year record) and may be undergoing floral succession. Accompanying these sedimentary processes are coastal erosion rates up to 6.9 m/yr along the Delaware estuary, up to 2.8 m/yr along the Delaware Atlantic coast, and ranging from 0.1 m/yr to 0.6 m/yr along the Delaware Atlantic coastal lagoons. Human development has destroyed nearly 9% of Delaware's fringing salt marshes between 1938 and 1975. The rapidly growing trend toward hardening the edge of the adjacent landward uplands leads us to the conclusion that much of the fringing salt marsh of Delaware will disappear over the next two to three centuries with only small remnants declining to extinction ca. 1500–1700 years into the future. Impacts on the State of Delaware, comprised of 13% fringing salt marshes 1/4 century ago, will be profound in terms of destruction of a large segment of the Atlantic coastal or eastern North American migratory bird flyway, and an eventual forced accommodation of the inhabitants of Delaware to these naturally ongoing geological processes.  相似文献   

18.
Salt marshes are widely believed to serve as nurseries for many fishes and crustaceans of fishery value as a result of the high production of vascular plant detritus and the protection from predation offered by shallow, spatially complex habitats. Comparisons of the yields of species which reside in salt marsh habitats during critical life history stages (such as penaeid shrimp) with the area of such habitats and their greater densities in flooded marshes and associated tidal creeks support the premise that marshes enhance the yield of such species. A range of evidence, including the amount of detrital export from marshes, the poor nutritive value of vascular plant detritus, and natural diets, casts doubt on the notion that production of fishery species is based on the direct consumption of marsh grass detritus or predominantly on food chains based on this detritus. Vascular plants and associated algae may, however, contribute to the production of prey species. The limited observations available support the hypothesis that salt marshes offer significant escape from mortality due to predation, but there have been yet few experimental tests of this hypothesis. Knowledge of relative importance of the food and refuge functions in support of living resources is of practical value in marsh and fisheries management. Better understanding of these roles is important to the effective evaluation of the effects of coastal habitat modifications on fisheries resources and design of alterations to minimize the losses of these values.  相似文献   

19.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

20.
A new methodology used on a large scale is reported by which short-term (≤1 yr) marsh accretion rates were measured in saltwater and brackish marshes and compared to first-time measurements made in freshwater marshes. The stable rare-earth elements (REE) dysprosium and samarium were used for soil horizon markers that were collected by a cryogenic field coring method and detected by instrumental neutron activation analysis (INAA). Accumulation in saltwater marshes for 6 months was estimated to be 0.76±0.26 cm (n=11) and accumulation for 1 year was 1.29±0.49 cm (n=7). Accumulation in brackish marshes for 6 months was 0.51±0.34 cm (n=6) and for 1 year, 0.84±0.32 cm (n=10). These data from saline and brackish environments can be compared to first-time measurements of accumulation in a freshwater marsh of 1.53±0.66 cm (n=8) for 6-month accumulation and 2.97±0.92 cm (n=11) for 1-year accumulation. The cryogenic REE-INAA method for sampling and measuring 6-month and 1-year accretion is nonpolluting, does not alter natural marsh soil processes, and is effective in salt, brackish, and freshwater marshes. Additionally, the marker is essentially immobile, long lasting in the soil profile, and inexpensive to buy, apply, and sample. INAA analysis of the cores is expensive and time-consuming, yet the REE-INAA method yields accretion data, especially in freshwater habitats, that are obtainable in no other way. A comparison between short-term accretion and the presence or absence of man-made canals showed no statistically significant differences of accretion along transects from 0- to 50-m distance into brackish and saltwater marshes (no freshwater transects were established). Sediment depositions measured at 50 m into fresh, brackish, and saltwater marshes from natural or man-made waterways showed no statistically significant differences of accretion within each habitat over a 6-month or a 1-year time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号