首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2-7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322-30,090 mg/kg Zn). Based on 12 bulk and 23 micro-focused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from ∼20% to ∼80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn (∼30-80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH4NO3 followed by 1 M NH4-acetate at pH 6.0. Even though the formation of Zn-precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.  相似文献   

2.
The objective of this study was to determine the local coordination of Zn in hydroxy-interlayered smectite (HIS) as a function of Zn loading and synthesis conditions and to assess the importance of hydroxy-interlayered minerals (HIM) for Zn retention in contaminated soils. Published and newly collected extended X-ray absorption fine structure (EXAFS) spectra of HIS reacted with Zn at molar Zn/hydroxy-Al ratios from 0.013 to 0.087 (corresponding to final Zn contents of 1615-8600 mg/kg Zn) were evaluated by shell fitting. In Zn-HIS, Zn was octahedrally coordinated to oxygen at 2.06-2.08 Å and surrounded by Al atoms at 3.03-3.06 Å in the second-shell. With increasing molar Zn/hydroxy-Al ratio, the coordination number of second-shell Al decreased from 6.6 to 2.1. These results were interpreted as a progressive shift from Zn incorporation in the vacancies of gibbsitic Al-polymers to Zn adsorption to incomplete Al-polymers and finally uptake by cation exchange in the polymer-free interlayer space of HIS with increasing Zn loadings. In a second part, we determined the speciation of Zn in eight contaminated soils (251-1039 mg/kg Zn) with acidic to neutral pH (pH 4.1-6.9) using EXAFS spectroscopy. All soils contained hydroxy-Al interlayered vermiculite (HIV). The analysis of EXAFS spectra by linear combination fitting (LCF) showed that a substantial fraction of total Zn (29-84%) was contained in HIM with high Zn loading. The remaining Zn was adsorbed to organic and inorganic soil components and incorporated into phyllosilicates. In sequential extractions of Zn-HIS spiked into quartz powder and the Zn contaminated soils, Zn was mainly released in the two most resistant fractions, in qualitative agreement with the findings from LCF. Our results suggest that formation of Zn-HIM may strongly retain Zn in pristine and moderately contaminated acidic to neutral soils. Due to their limited sorption capacity, however, HIM do not allow for the accumulation of high levels of Zn in response to continued Zn input into soils.  相似文献   

3.
In order to better understand the long-term speciation and fractionation of Zn in soils, we investigated three soils naturally enriched in Zn (237–864 mg/kg Zn) from the weathering of Zn-rich limestones (40–207 mg/kg Zn) using extended X-ray absorption fine structure (EXAFS) spectroscopy and sequential extractions. The analysis of bulk EXAFS spectra by linear combination fitting (LCF) indicated that Zn in the oolitic limestones was mainly present as Zn-containing calcite (at site Dornach), Zn-containing goethite (Gurnigel) and Zn-containing goethite and sphalerite (Liestal). Correspondingly, extraction of the powdered rocks with 1 M NH4-acetate at pH 6.0 mobilized only minor fractions of Zn from the Gurnigel and Liestal limestones (<30%), but most Zn from the Dornach rock (81%). In the Dornach soil, part of the Zn released from the dissolving limestone was subsequently incorporated into pedogenic hydroxy-interlayered vermiculite (Zn-HIV, 30%) and Zn-containing kaolinite (30%) and adsorbed or complexed by soil organic and inorganic components (40%). The Gurnigel and Liestal soils contained substantial amounts of Zn-containing goethite (50%) stemming from the parent rock, smaller amounts (20%) of Zn-containing kaolinite (and possibly Zn-HIV), as well as adsorbed or complexed Zn-species (30%). In the soil from Liestal, sphalerite was only found in trace amounts, indicating its dissolution during soil formation. In sequential extractions, large percentages of Zn (55–85%) were extracted in recalcitrant extraction steps, confirming that Zn-HIV, Zn-containing kaolinite and Zn-containing goethite are highly resistant to weathering. These Zn-bearing phases thus represent long-term hosts for Zn in soils over thousands of years. The capability of these phases to immobilize Zn in heavily contaminated soils may however be limited by their uptake capacity (especially HIV and kaolinite) or their abundance in soil.  相似文献   

4.
Combined use of synchrotron-based X-ray fluorescence (SXRF), diffraction (XRD), and absorption (EXAFS) with an X-ray spot size as small as five micrometers allows us to examine noninvasively heterogeneous soils and sediments. Specifically, the speciation of trace metals at low bulk concentrations and the nature of host minerals can be probed with a level of detail unattainable by other techniques. The potential of this novel analytical approach is demonstrated by determining the Zn species in the solid phases of a pristine horizon of a clayey acidic soil (pH 4.5-5.0) having a Zn concentration of 128 mg/kg. The sample presents a differentiated fabric under the optical microscope with traces of localized manganiferous, ferriferous and argillaceous accumulations. The high chemical and textural heterogeneity of this soil offers an opportunity to identify new Zn species and to confirm the existence of others proposed from published least-squares fits of bulk averaged EXAFS spectra. As many as five to six Zn species were observed: sphalerite (ZnS), zincochromite (ZnCr2O4), Zn-containing phyllosilicate and lithiophorite, and Zn-sorbed ferrihydrite or Zn-phosphate, the results being less definitive for these two last species. Bulk EXAFS spectroscopy applied to the powdered soil indicated that Zn is predominantly associated with phyllosilicates, all other species amounting to < ∼10 to 20% of total zinc. The role of lithiophorite in the sequestration of zinc in soils had been inferred previously, but the firm identification of lithiophorite in this study serves as an excellent demonstration of the capabilities of combined micro-SXRF/XRD/EXAFS measurements. The micro-EXAFS spectrum collected in an area containing only phyllosilicates could not be simulated assuming a single Zn structural environment. Two distinct octahedrally-coordinated crystallographic sites (i.e., two EXAFS components) were considered: one site located within the phyllosilicate structure (isomorphic cationic substitution in the octahedral sheet) and another in the interlayer region in the form of a Zn-sorbed hydroxy-Al interlayered species. This second subspecies is less certain and further investigation of the individual EXAFS spectrum of this component is needed to precise its exact nature and the uptake mechanism of zinc in it.  相似文献   

5.
Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater MnII-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg−1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the MnIV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg−1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg−1 biosorbent, the proportion of total Zn sorption attributed to bioorganic material was 38 mol%. The maximum Zn loading to the biogenic oxide that we observed was 4.1 mol Zn kg−1 biogenic Mn oxide, corresponding to 0.37 ± 0.02 mol Zn mol−1 Mn. This loading is in excellent agreement with previous estimates of the content of cation vacancies in the biogenic oxide. The results of this study improve our knowledge of Zn speciation in natural systems and are consistent with those of Zn speciation in mineral soil fractions and ferromanganese nodules where the Mn oxides present are possibly biogenic.  相似文献   

6.
Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 μm) and fine (<2 μm) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system.The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn2SiO4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn2SiO4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si. The second process likely occurs because dissolved Zn and Si are supersaturated with respect to Zn phyllosilicate. EXAFS spectroscopy, in combination with PCA and LSF, is shown to be a meaningful approach to quantitatively determining the speciation of trace elements in sediments and soils.  相似文献   

7.
Overbank sediments contaminated with metalliferous minerals are a source of toxic metals that pose risks to living organisms. The overbank sediments from the Geul river in Belgium contain 4000-69,000 mg/kg Zn as a result of mining and smelting activities, principally during the 19th century. Three main Zn species were identified by powder Zn K-edge EXAFS spectroscopy: smithsonite (ZnCO3), tetrahedrally coordinated sorbed Zn (sorbed IVZn) and Zn-containing trioctahedral phyllosilicate. Smithsonite is a primary mineral, which accounts for approximately 20-60% of the Zn in sediments affected by mining and smelting of oxidized Zn ores (mostly carbonates and silicates). This species is almost absent in sediments affected by mining and smelting of both sulphidic (ZnS, PbS) and oxidized ores, presumably because of acidic dissolution associated with the oxidation of sulphides, as suggested by the lower pH of this second type of sediment (pH(CaCl2) <7.0 vs. pH(CaCl2) >7.0 for the first type). Thus, sulphide minerals in sediment deposits can act as a secondary source of dissolved metals by a chemical process analogous to acid mine drainage. The sorbed IVZn component ranges up to approximately 30%, with the highest proportion occurring at pH(CaCl2) <7.0 as a result of the readsorption of dissolved Zn2+ on sediments constituents. Kerolite-like Zn-rich phyllosilicate is the major secondary species in all samples, and in some the only detected species, thus providing the first evidence for pervasive sequestration of Zn into this newly formed precipitate at the field scale.  相似文献   

8.
We report results from an extensive study on the speciation of zinc (Zn) and its relation to the mobility and bioavailablity of this element in a smelter contaminated soil and an in situ remediated area of this soil 12 yr after the application of cyclonic ash and compost. Emphasis was placed on the role of neoformed precipitates in controlling Zn speciation, mobility and bioavailability under different environmental conditions. Twelve years after remediation, the pH of the treated and non-treated soil differed by only 0.5 pH unit. Using state-of-the-art electron and X-ray microscopies in combination with micro-focused extended X-ray absorption fine structure (μ-EXAFS) spectroscopy, no major differences in Zn speciation were found between samples of the treated and non-treated soil. In both soils, 30% to 50% of Zn was present in smelter related minerals (willemite, hemimorphite or gahnite), while 50% to 70% of Zn was incorporated into newly formed Zn precipitates. Contrary to the non-treated soil, the treated soil did not contain gahnite or sphalerite; it is possible that these minerals were dissolved under the higher pH conditions at the time of treatment. Desorption experiments, using a stirred flow technique with a 0.1 mol/L CaCl2 (pH 6.5) and a HNO3 (pH 4.0) solution were employed to determine the exchangeable Zn fraction and the Zn fraction which will be mobilized under more extreme weathering conditions, respectively. No significant differences were found in desorption behavior between the treated vs. non-treated soil. Bioavailability tests, using the R. metallidurans AE1433 biosensor showed that ∼8% of total Zn was bioavailable in both the treated and non-treated soils. It was concluded that the incorporation of Zn into newly formed precipitates in both the treated and non treated soils leads to a significant natural attenuation of the exchangeable/bioavailable Zn fraction at near neutral pH conditions. At lower pHs, conditions not favorable to the formation of Zn precipitates, the pool of Zn associated with the secondary Zn precipitates is potentially more bioavailable.  相似文献   

9.
The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral weathering reactions which have taken place at the field site. A kinetic isotope effect during the Fe detachment from the phyllosilicates was identified as the dominant fractionation mechanism in young weathering environments, controlling not only the light isotope signature of secondary Fe(III)-(hydr)oxides but also significantly contributing to the isotope signature of plants. The present study further revealed that this kinetic fractionation effect can persist over considerable reaction advance during chemical weathering in field systems and is not only an initial transient phenomenon.  相似文献   

10.
The speciation of iron (Fe) in soils, sediments and surface waters is highly dependent on chemical interactions with natural organic matter (NOM). However, the molecular structure and hydrolysis of the Fe species formed in association with NOM is still poorly described. In this study extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry and hydrolysis of Fe(III) in solution of a peat humic acid (5010-49,200 μg Fe g−1 dry weight, pH 3.0-7.2). Data were analyzed by both conventional EXAFS data fitting and by wavelet transforms in order to facilitate the identification of the nature of backscattering atoms. Our results show that Fe occurs predominantly in the oxidized form as ferric ions and that the speciation varies with pH and Fe concentration. At low Fe concentrations (5010-9920 μg g−1; pH 3.0-7.2) mononuclear Fe(III)-NOM complexes completely dominates the speciation. The determined bond distances for the Fe(III)-NOM complexes are similar to distances obtained for Fe(III) complexed by desferrioxamine B and oxalate indicating the formation of a five-membered chelate ring structure. At higher Fe concentrations (49,200 μg g−1; pH 4.2-6.9) we detect a mixture of mononuclear Fe(III)-NOM complexes and polymeric Fe(III) (hydr)oxides with an increasing amount of Fe(III) (hydr)oxides at higher pH. However, even at pH 6.9 and a Fe concentration of 49,200 μg g−1 our data indicates that a substantial amount of the total Fe (>50%) is in the form of organic complexes. Thus, in environments with significant amounts of organic matter organic Fe complexes will be of great importance for the geochemistry of Fe. Furthermore, the formation of five-membered chelate ring structures is in line with the strong complexation and limited hydrolytic polymerization of Fe(III) in our samples and also agrees with EXAFS derived structures of Fe(III) in organic soils.  相似文献   

11.
In order to better understand the origin and enrichment mechanisms leading to elevated Zn concentrations in Jurassic limestone of the Jura mountain range (JMR) and the Burgundy (B), we investigated four locations of Bajocian age (JMR: Lausen–Schleifenberg, Gurnigel; B: Vergisson–Davayé, Lucy-le-Bois) and two locations of Oxfordian age (JMR: Dornach, Pichoux) for their Zn distribution and speciation. Measurements of the acid-extractable and bulk Zn contents showed that Zn is stratigraphically and spatially heterogeneously distributed, in association with permeable carbonate levels. Up to 3,580 and 207 mg/kg Zn was detected in Bajocian and Oxfordian limestone, respectively, with numerous limestone samples having Zn contents above 50 mg/kg. Using X-ray absorption near edge structure spectroscopy and micro-X-ray fluorescence spectrometry, the speciation and micro-scale distribution of Zn was investigated for selected limestone samples. In Bajocian limestone sphalerite and/or Zn-substituted goethite and a minor fraction of Zn-bearing carbonates were identified. In contrast, Zn-bearing carbonates (Zn-substituted calcite and hydrozincite) were accounting for most of the total Zn in Oxfordian limestone. The micro-scale distribution of Zn for Bajocian and Oxfordian limestone was however similar with localized Zn-rich zones in the limestone cement and at the rim of oolites. The stratigraphic sporadicity and microscale heterogeneity of the Zn distribution together with the Zn speciation results point to a hydrothermal origin of Zn. Occurence of Zn-goethite is probably linked to the oxidative transformation of framboidal pyrite and hydrothermal sphalerite in contact with meteoritic waters. Difference in speciation between Bajocian limestone and Oxfordian limestone may be related to differences in rock permeability and/or to various hydrothermal events. Isotopic dating of the different mineralizations will be needed to decipher differences in Zn speciation and the precise chronology of hydrothermal episodes.  相似文献   

12.
Fractionation of heavy metals (HMs) in amended soils is needed to predict elemental mobility in soil and phytoavailability to plants. A study was conducted to determine the effects of different amendments on HMs availability and their redistribution among soil fractions. A contaminated soil was selected from around a Zn mine and amended with 0, 2, 4, and 6 g kg−1 of vermicompost (VC), zeolite (ZE), and di-ammonium phosphate (DP) and incubated at field moisture. The amounts of Cd, Pb, Zn, and Cu were determined from the soil after 6 months of incubation time using DTPA and sequential extraction procedures. The total concentrations of Cd, Pb, Zn, and Cu were 41, 3,099, 1,997, and 83 mg kg−1 of soil, respectively. All amendments decreased significantly [probability (p) ≤ 0.05] DTPA-extractable Cd, Pb, and Cu, but not Zn, in the soil. For instance, DTPA-extractable Cd, Pb, and Cu decreased by 40, 290, and 20%, respectively, and that of Zn increased by 18% with DP1 (2 g kg−1 of di-ammonium phosphate) application. The concentrations of Pb and Cd decreased mainly in the specifically sorbed (SS) but increased in the amorphous Fe oxide (AFeO) fraction with DP application, indicating redistribution of Pb and Cd in the fractions with less mobility. Lead immobilization by DP was mainly attributed to the P-induced formation of chloropyromorphite, which was identified in the DP treatment using X-ray diffraction technique. It was concluded that DP was the most effective amendment in immobilizing Pb and Cd, though it increased Zn mobility.  相似文献   

13.
土壤重金属连续提取方法的优化   总被引:2,自引:0,他引:2  
刘丹丹  刘菲  缪德仁 《现代地质》2015,29(2):390-396
重金属在污染土壤中的形态分布决定着重金属的迁移性和危害的程度。土壤重金属形态分析应用最多的是Tessier和BCR连续提取法。Tessier和BCR连续提取法没有考虑土壤样品的特征。美国环保署危险废物浸出毒性鉴别标准法虽然考虑土壤pH值,但没有划分形态。采集不同pH土样,结合Tessier、BCR和毒性浸出鉴别方法的特征,优化出针对不同pH值土壤的连续提取方法,将土壤中重金属划分为活性态、次生碳酸盐结合态、次稳定态和稳定态。用优化的连续提取方法对土样进行连续提取,重金属回收率为85%~115%。优化连续提取方法的结果与Tessier和BCR结果对比显示优化连续提取方法克服了Tessier连续提取法对非石灰质土壤提取过量BCR连续提取法对石灰质土壤提取不足的缺点。优化后的连续提取方法数据稳定可靠,可作为重金属形态分析方法使用。  相似文献   

14.
The chemical speciation of potentially toxic elements (As, Cd, Cu, Pb, and Zn) in the contaminated soils and sulfides-rich tailings sediments of an abandoned tungsten mine in Korea was evaluated by conducting modified BCR sequential extraction tests. Kinetic and static batch leaching tests were also conducted to evaluate the potential release of As and other heavy metals by acidic rain water and the leaching behaviors of these heavy metals. The major sources of the elements were As-, Zn- and Pb-bearing sulfides, Pb carbonates (i.e., cerussite), and Pb sulfates (i.e., anglesite). The biggest pollutant fraction in these soil and tailing samples consists of metals bound to the oxidizable host phase, which can be released into the environment if conditions become oxidative, and/or to residual fractions. No significant difference in total element concentrations was observed between the tailings sediments and contaminated soils. For both sample types, almost no changes occurred in the mobility of As and the other heavy metals at 7 days, but the mobility increased afterwards until the end of the tests at 30 days, regardless of the initial pH. However, the mobility was approximately 5–10 times higher at initial pH 1.0 than at initial pHs of 3.0 and 5.0. The leached amounts of all the heavy metal contents were higher from tailings sediments than from contaminated soils at pH > 3.0, but were lower at pH < 3.0 except for As. Results of this study suggest that further dissolution of heavy metals from soil and tailing samples may occur during extended rainfall, resulting in a serious threat to surface and groundwater in the mine area.  相似文献   

15.
Synchrotron-based X-ray radiation microfluorescence (μ-SXRF) and micro-focused and powder extended X-ray absorption fine structure (EXAFS) spectroscopy measurements, combined with desorption experiments and thermodynamic calculations, were used to evaluate the solubility of metal contaminants (Zn, Cu, Pb) and determine the nature and fractional amount of Zn species in a near-neutral pH (6.5-7.0) truck-farming soil contaminated by sewage irrigation for one hundred years. Zn is the most abundant metal contaminant in the soil (1103 mg/kg), followed by Pb (535 mg/kg) and Cu (290 mg/kg). The extractability of Zn, Pb, and Cu with citrate, S,S-ethylenediaminedisuccinic acid (EDDS), and ethylenediaminetetraacetic acid (EDTA) was measured as a function of time (24 h, 72 h, 144 h), and also as a function of the number of applications of the chelant (5 applications each with 24 h of contact time). Fifty-three percent of the Zn was extracted after 144 h with citrate, 51% with EDDS and 46% with EDTA, compared to 69, 87, and 61% for Cu, and 24, 40, and 34% for Pb. Renewing the extracting solution removed more of the metals. Seventy-nine, 65, and 57% of the Zn was removed after five cycles with citrate, EDDS and EDTA, respectively, compared to 88, 100, and 72% for Cu, and 91, 65, and 47% for Pb. Application to the untreated soil of μ-SXRF, laterally resolved μ-EXAFS combined with principal component analysis, and bulk averaging powder EXAFS with linear least-squares combination fit of the data, identified five Zn species: Zn-sorbed ferrihydrite, Zn phosphate, Zn-containing trioctahedral phyllosilicate (modeled by the Zn kerolite, Si4(Mg1.65Zn1.35)O10(OH)2 · nH2O), willemite (Zn2SiO4), and gahnite (ZnAl2O4), in proportions of ∼30, 28, 24, 11, and less than 10%, respectively (precision: 10% of total Zn). In contrast to Cu and Pb, the same fractional amount of Zn was extracted after 24 h contact time with the three chelants (40-43% of the initial content), suggesting that one of the three predominant Zn species was highly soluble under the extraction conditions. Comparison of EXAFS data before and after chemical treatment revealed that the Zn phosphate component was entirely and selectively dissolved in the first 24 h of contact time. Preferential dissolution of the Zn phosphate component is supported by thermodynamic calculations. Despite the long-term contamination of this soil, about 79% of Zn, 91% of Pb, and 100% of Cu can be solubilized in the laboratory on a time scale of a few days by chemical complexants. According to metal speciation results and thermodynamic calculations, the lower extraction level measured for Zn is due to the Zn phyllosilicate component, which is less soluble than Zn phosphate and Zn ferrihydrite.  相似文献   

16.
Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength (I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.  相似文献   

17.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   

18.
The speciation of Mn, Fe, As, and Zn in a fast-growing (0.02mm/yr), shallow-marine, ferromanganese nodule has been examined by micro X-ray fluorescence, micro X-ray diffraction, and micro X-ray absorption spectroscopy. This nodule exhibits alternating Fe-rich and Mn-rich layers reflecting redox variations in water chemistry. Fe occurs as two-line ferrihydrite. The As is strictly associated with Fe and is mostly pentavalent, with an environment similar to that of As sorbed on or coprecipitated with synthetic ferrihydrite. The Mn is in the form of turbostratic birnessite with ∼10% trivalent manganese in the layers and probably ∼8% corner-sharing metal octahedra in the interlayers. The Zn is enriched on the rim of the nodule, associated with Mn. The Zn is completely (>90%) tetrahedrally coordinated and sorbed in the interlayers of birnessite on vacant layer Mn sites. The Zn and Mn species are similar to ones found in soils, suggesting common structural principles despite the differing formation conditions in these systems.  相似文献   

19.
Riparian soils are periodically flooded, leading to temporarily reducing conditions. Diffusion of O2 through plants into the rhizosphere maintains oxic conditions around roots, thereby promoting trace element fractionation along a redox gradient from the reduced soil matrix towards the oxic rhizosphere. The aim of this study was to determine the distribution and speciation of arsenic around plant roots in a contaminated (170-280 mg/kg As) riparian floodplain soil (gleyic Fluvisol). The analysis of soil thin sections by synchrotron micro-X-ray fluorescence (μ-XRF) spectrometry showed that As and Fe were enriched around roots and that As was closely correlated with Fe. Arsenic contents of three manually separated rhizosphere soil samples from the subsoil were 5-9 times higher than respective bulk As contents. This corresponds to the accumulation of about half of the total As in the subsoil in Fe-enrichments around roots. The speciation of As in the soil was assessed by oxalate extractions at pH 3.0 as well as by X-ray absorption near edge structure (XANES) and extended X-ray fine structure (EXAFS) spectroscopy. More than 77% of the total As was oxalate extractable in all samples. XANES and EXAFS spectra demonstrated that As was predominantly As(V). For the accurate analysis of the EXAFS data with respect to the bonding of As(V) to the Fe- or Al-octahedra of (hydr)oxides and clays, all 3-leg and 4-leg multiple scattering paths within the As(V)O4-tetrahedron were considered in a fully constrained fitting scheme. We found that As(V) was predominantly associated with Fe-(hydr)oxides, and that sorption to Al- and Mn-hydroxides was negligible. The accumulation of As in the rhizosphere may affect As uptake by plants. Regarding the mobility of As, our results suggest that by oxygenation of the rhizosphere, plants attenuate the leaching of As from riparian floodplain soils during periods of high groundwater levels or flooding.  相似文献   

20.
The mobility and solid-state speciation of zinc in a pseudogley soil (pH = 8.2-8.3) before and after contamination by land-disposition of a dredged sediment ([Zn] = 6600 mg kg−1) affected by smelter operations were studied in a 50 m2 pilot-scale test site and the laboratory using state-of-the-art synchrotron-based techniques. Sediment disposition on land caused the migration of micrometer-sized, smelter-related, sphalerite (ZnS) and franklinite (ZnFe2O4) grains and dissolved Zn from the sediment downwards to a soil depth of 20 cm over a period of 18 months. Gravitational movement of fine-grained metal contaminants probably occurred continuously, while peaks of Zn leaching were observed in the summer when the oxidative dissolution of ZnS was favored by non-flooding conditions. The Zn concentration in the <50 μm soil fraction increased from ∼61 ppm to ∼94 ppm in the first 12 months at 0-10 cm depth, and to ∼269 ppm in the first 15 months following the sediment deposition. Higher Zn concentrations and enrichments were observed in the fine (<2 μm) and very fine (<0.2 μm) fractions after 15 months (480 mg kg−1 and 1000 mg kg−1, respectively), compared to 200 mg kg−1 in the <2 μm fraction of the initial soil. In total, 1.2% of the Zn initially present in the sediment was released to the environment after 15 months, representing an integrated quantity of ∼4 kg Zn over an area of 50 m2. Microfocused X-ray fluorescence (XRF), diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy techniques were used to image chemical associations of Zn with Fe and Mn, and to identify mineral and Zn species in selected points-of-interest in the uncontaminated and contaminated soil. Bulk average powder EXAFS spectroscopy was used to quantify the proportion of each Zn species in the soil. In the uncontaminated soil, Zn is largely speciated as Zn-containing phyllosilicate, and to a minor extent as zincochromite (ZnCr2O4), IVZn-sorbed turbostratic birnessite (δ-MnO2), and Zn-substituted goethite. In the upper 0-10 cm of the contaminated soil, ∼60 ± 10% of total Zn is present as ZnS inherited from the overlying sediment. Poorly-crystalline Zn-sorbed Fe (oxyhydr)oxides and zinciferous phyllosilicate amount to ∼20-30 ± 10% each and, therefore, make up most of the remaining Zn. Smaller amounts of franklinite (ZnFe2O4), Zn-birnessite and Zn-goethite were also detected. Further solubilization of the Zn inventory in the sediment, and also remobilization of Zn from the poorly-crystalline neoformed Fe (oxyhydr)oxide precipitates, are expected over time. This study shows that land deposition of contaminated dredged sediments is a source of Zn for the covered soil and, consequently, presents environmental hazards. Remediation technologies should be devised to either sequester Zn into sparingly soluble crystalline phases, or remove Zn by collecting leachates beneath the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号