首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the chemical and spectrophotometric evolution of galactic discs with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results with a large body of observational data on present-day galactic discs, including disc sizes and central surface brightness, Tully–Fisher relations in various wavelength bands, colour–colour and colour–magnitude relations, gas fractions versus magnitudes and colours and abundances versus local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided that the time-scale for star formation in low-mass discs is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successful in reproducing major features of present-day discs, like the change in the slope of the Tully–Fisher relation with wavelength, the fact that more massive galaxies are on average 'redder' than low-mass ones (a generic problem of standard hierarchical models) and the metallicity–luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture is at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.  相似文献   

2.
We compare two methods of distance determination to spiral galaxies using optical/near-infrared (NIR) observations, the ( I − K ) versus M K colour–absolute magnitude (CM) relation and the I - and K -band Tully–Fisher relation (TFR).
Dust-free colours and NIR absolute magnitudes greatly enhance the usefulness of the NIR CM relation as a distance indicator for moderately to highly inclined spiral galaxies in the field (inclinations between ∼80° and 90°); by avoiding contamination by dust the scatter in the CM relation is significantly reduced, compared with similar galaxy samples published previously. The CM relation can be used to determine distances to field spiral galaxies with M K >−25.5, to at least M K ≈−20.
Our results, supplemented with previously published observations for which we can – to some degree – control the effects of extinction, are consistent with a universal nature of the CM relation for field spiral galaxies.
High-resolution observations made with the Hubble Space Telescope can provide a powerful tool to calibrate the relation and extend the useful distance range by more than a factor of 2 compared with ground-based observations.
The intrinsic scatter in the NIR CM relation in the absolute K -band magnitudes is ∼0.5 mag, yielding a lower limit to the accuracy of distance determinations of the order of 25 per cent.
Although we find an unusually low scatter in the TFR (probably a statistical accident), a typical scatter in the TFR would yield distances to our sample galaxies with uncertainties of only ∼15 per cent. However, one of the main advantages of the use of the NIR CM relation is that we need only photometric data to obtain distance estimates; use of the TFR requires additional kinematic data, although it can be used to significantly greater distances.  相似文献   

3.
4.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

5.
In a recent paper, Puech and co-workers compared K -band Tully–Fisher relations derived for nearby and distant galaxies, respectively. They concluded that the two relations differ, and deduced that there is evolution in the Tully–Fisher relations. The statistical comparison between the two regression lines is re-examined, and it is shown that the statistical test used gives non-significant results. It is argued that better results can be obtained by comparing the 'inverse' Tully–Fisher relations, and it is demonstrated by two different methods that the nearby- and distant-sample relations do indeed differ at a very high significance level. One of the statistical methods described is non-parametric, and can be applied very generally to compare linear regressions from two different samples.  相似文献   

6.
We exploit the gravitational potential of massive cluster lenses to probe the emission-line properties of six   z = 1  galaxies which appear as highly magnified luminous arcs. Using the Gemini Multi-Object Spectrograph (GMOS) integral field spectrograph together with detailed cluster lens models, we reconstruct the intrinsic morphologies and two-dimensional velocity fields in these galaxies on scales corresponds to ∼0.5 kpc (unlensed) at   z = 1  . Four of the galaxies have stable disc-like kinematics, whilst the other two resemble interacting or starburst galaxies. These galaxies lie close to the mean rest-frame I -band Tully–Fisher relation for nearby spirals suggesting a clear preference for hierarchical growth of structure. In the rest-frame B band, the observations suggest  0.5 ± 0.3 mag  of brightening, consistent with increased star-formation activity at   z = 1  . However, the galaxies with stable disc kinematics have more slowly rising rotation curves than expected from galaxies with similar surface brightness in the local Universe. We suggest that this may arise because the distant galaxies have lower bulge masses than their local counterparts. Whilst this study is based on only six galaxies, the gain in flux and in spatial resolution achieved via gravitational magnification provides a much more detailed view of the high-redshift Universe than that possible with conventional surveys.  相似文献   

7.
We obtain a robust, non-parametric, estimate of the Hubble constant from the linear diameters and rotation velocities of galaxies in the recent KLUN sample, calibrated using Cepheid distances to Hubble Space Telescope Key Project galaxies. There are two key features that make our analysis considerably more robust than previous work. First, the method is independent of the spatial distribution of galaxies and is insensitive to Malmquist bias. It may, therefore, be applied to more distant samples than so-called 'plateau' methods – making it much less vulnerable to the impact of peculiar motions in the Local Supercluster. Secondly, we include information on the galaxy rotation velocities in a fully non-parametric manner: unlike the conventional Tully–Fisher relation we reconstruct a robust estimate of the cumulative distribution function of galaxy diameter at given rotation velocity, without requiring the assumption of, for example, a linear Tully–Fisher relation with symmetric Gaussian residuals.
Using this robust method we find H 0=65±6 km s−1 Mpc−1 from our analysis – in excellent agreement with many recent determinations of the Hubble parameter, although somewhat larger than previous results using galaxy diameters.  相似文献   

8.
9.
We present the K -band (2.2 μm) luminosity functions (LFs) of the X-ray-luminous clusters MS1054–0321 ( z  = 0.823), MS0451–0305 ( z  = 0.55), Abell 963 ( z  = 0.206), Abell 665 ( z  = 0.182) and Abell 1795 ( z  = 0.063) down to absolute magnitudes M K  = −20. Our measurements probe fainter absolute magnitudes than do any previous studies of the near-infrared LFs of clusters. All the clusters are found to have similar LFs within the errors, when the galaxy populations are evolved to redshift z  = 0. It is known that the most massive bound systems in the Universe at all redshifts are X-ray-luminous clusters. Therefore, assuming that the clusters in our sample correspond to a single population seen at different redshifts, the results here imply that not only had the stars in present-day ellipticals in rich clusters formed by z  = 0.8, but that they existed in as luminous galaxies then as they do today.   Additionally, the clusters have K -band LFs which appear to be consistent with the K -band field LF in the range −24 <  M K  < −22, although the uncertainties in both the field and cluster samples are large.  相似文献   

10.
We find a new Tully–Fisher-like relation for spiral galaxies holding at different galactocentric radii. This radial Tully–Fisher relation allows us to investigate the distribution of matter in the optical regions of spiral galaxies. This relation, applied to three different samples of rotation curves of spiral galaxies, directly proves that: (i) the rotation velocity of spirals is a good measure of their gravitational potential and both the rotation curve's amplitudes and profiles are well predicted by galaxy luminosity, (ii) the existence of a dark component, less concentrated than the luminous one, and (iii) a scaling law, according to which, inside the disc optical size:   M dark/ M lum= 0.5( L B /1011 L B )−0.7  .  相似文献   

11.
The huge size and uniformity of the Sloan Digital Sky Survey (SDSS) make possible an exacting test of current models of galaxy formation. We compare the predictions of the galform semi-analytical galaxy formation model for the luminosities, morphologies, colours and scalelengths of local galaxies. galform models the luminosity and size of the disc and bulge components of a galaxy, and so we can compute quantities which can be compared directly with SDSS observations, such as the Petrosian magnitude and the Sérsic index. We test the predictions of two published models set in the cold dark matter cosmology: the Baugh et al. model, which assumes a top-heavy initial mass function (IMF) in starbursts and superwind feedback, and the Bower et al. model, which uses active galactic nucleus feedback and a standard IMF. The Bower et al. model better reproduces the overall shape of the luminosity function, the morphology–luminosity relation and the colour bimodality observed in the SDSS data, but gives a poor match to the size–luminosity relation. The Baugh et al. model successfully predicts the size–luminosity relation for late-type galaxies. Both models fail to reproduce the sizes of bright early-type galaxies. These problems highlight the need to understand better both the role of feedback processes in determining galaxy sizes, in particular the treatment of the angular momentum of gas reheated by supernovae, and the sizes of the stellar spheroids formed by galaxy mergers and disc instabilities.  相似文献   

12.
13.
We study the location of massive disc galaxies on the Tully–Fisher (TF) relation. Using a combination of K -band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global H  i profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km s−1 lie systematically to the right of the relation defined by less massive systems, causing a characteristic 'kink' in the relations. Massive, early-type disc galaxies in particular have a large offset, up to 1.5 mag, from the main relation defined by less massive and later-type spirals.
The presence of a change in slope at the high-mass end of the TF relation has important consequences for the use of the TF relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z ≈ 1 may have been significantly larger than estimated in several recent studies.
We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the TF relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.  相似文献   

14.
If dark haloes are composed of dense gas clouds, as has recently been inferred, then collisions between clouds lead to galaxy evolution. Collisions introduce a core in an initially singular dark matter distribution, and can thus help to reconcile scale-free initial conditions – such as are found in simulations – with observed haloes, which have cores. A pseudo-Tully–Fisher relation, between halo circular speed and visible mass (not luminosity), emerges naturally from the model: M vis∝ V 7/2.
Published data conform astonishingly well to this theoretical prediction. For our sample of galaxies, the mass–velocity relationship has much less scatter than the Tully–Fisher relation, and holds as well for dwarf galaxies (where diffuse gas makes a sizeable contribution to the total visible mass) as it does for giants. It seems very likely that this visible-mass/velocity relationship is the underlying physical basis for the Tully–Fisher relation, and this discovery in turn suggests that the dark matter is both baryonic and collisional.  相似文献   

15.
We predict the Tully–Fisher (TF) and surface-brightness–magnitude relations for disc galaxies at     and discuss the origin of these scaling relations and their scatter. We find that both halo dynamics and the star formation history play important roles, and we show that the variation of the TF relation with redshift can be a potentially powerful discriminator of galaxy-formation models. In particular, the TF relation at high redshift might be used to break parameter degeneracies among galactosynthesis models at     , as well as to constrain the redshift distribution of collapsing dark-matter haloes, the star formation history and baryon fraction in the disc and the distribution of halo spins.  相似文献   

16.
We present Fabry–Perot observations obtained in the frame of the GHASP survey (Gassendi HAlpha survey of SPirals). We have derived the Hα map, the velocity field and the rotation curve for a new set of 44 galaxies. The data presented in this paper are combined with the data published in the three previous papers providing a total number of 85 of the 96 galaxies observed up to now. This sample of kinematical data has been divided into two groups: isolated (ISO) and softly interacting (SOFT) galaxies. In this paper, the extension of the Hα discs, the shape of the rotation curves, the kinematical asymmetry and the Tully–Fisher relation have been investigated for both ISO and SOFT galaxies. The Hα extension is roughly proportional to R25 for ISO as well as for SOFT galaxies. The smallest extensions of the ionized disc are found for ISO galaxies. The inner slope of the rotation curves is found to be correlated with the central concentration of light more clearly than with the type or the kinematical asymmetry, for ISO as well as for SOFT galaxies. The outer slope of the rotation curves increases with the type and with the kinematical asymmetry for ISO galaxies but shows no special trend for SOFT galaxies. No decreasing rotation curve is found for SOFT galaxies. The asymmetry of the rotation curves is correlated with the morphological type, the luminosity, the  ( B − V )  colour and the maximal rotational velocity of galaxies. Our results show that the brightest, the most massive and the reddest galaxies, which are fast rotators, are the least asymmetric, meaning that they are the most efficient with which to average the mass distribution on the whole disc. Asymmetry in the rotation curves seems to be linked with local star formation, betraying disturbances of the gravitational potential. The Tully–Fisher relation has a smaller slope for ISO than for SOFT galaxies.  相似文献   

17.
We have examined the effects of the ultraviolet background radiation (UVB) on the colour–magnitude relation (CMR) of elliptical galaxies in clusters of galaxies in the hierarchical clustering scenario by using a semi-analytic model of galaxy formation. In our model the UVB photoionizes gas in dark haloes and suppresses the cooling of the diffuse hot gas on to galaxy discs. By using a semi-analytic model without the effect of the UVB, Kauffmann & Charlot found that the CMR can be reproduced by strong supernova heating because such supernova feedback suppresses the chemical enrichment in galaxies, especially for small galaxies. We find that the CMR also becomes bluer because of the UVB, in a different way from the effect of supernova feedback. While supernova feedback suppresses the chemical enrichment by a similar mechanism to galactic winds, the UVB suppresses the cooling of the hot gas. This induces suppression of the metallicity of the intracluster medium (ICM). In our model we find that the existence of the UVB can plausibly account for an observed ICM metallicity that is equal to nearly 0.3 times the solar value, and that in this case we can reproduce the CMR and the metallicity of the ICM simultaneously.  相似文献   

18.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

19.
We measure the     B -band optical luminosity function (LF) for galaxies selected in a blind H  i survey. The total LF of the H  i selected sample is flat, with Schechter parameters     and     , in good agreement with LFs of optically selected late-type galaxies. Bivariate distribution functions of several galaxy parameters show that the H  i density in the local Universe is more widely spread over galaxies of different size, central surface brightness and luminosity than the optical luminosity density is. The number density of very low surface brightness (LSB ) (>24.0 mag arcsec−2) gas-rich galaxies is considerably lower than that found in optical surveys designed to detect dim galaxies. This suggests that only a part of the population of LSB galaxies is gas-rich and that the rest must be gas-poor. However, we show that this gas-poor population must be cosmologically insignificant in baryon content. The contribution of gas-rich LSB galaxies (>23.0 mag arcsec−2) to the local cosmological gas and luminosity density is modest     and     per cent respectively); their contribution to Ωmatter is not well-determined, but probably <11 per cent. These values are in excellent agreement with the low redshift results from the Hubble Deep Field.  相似文献   

20.
We study the globular cluster (GC) system of the dust-lane elliptical galaxy NGC 6702, using B -, V - and I -band imaging observations carried out at the Keck telescope. This galaxy has a spectroscopic age of ≈2 Gyr suggesting recent star formation. We find strong evidence for a bimodal GC colour distribution, with the blue peak having a colour similar to that of the Galactic halo GCs. Assuming that the blue GCs are indeed old and metal-poor, we estimate an age of 2–5 Gyr and supersolar metallicity for the red GC subpopulation. Despite the large uncertainties, this is in reasonable agreement with the spectroscopic galaxy age. Additionally, we estimate a specific frequency of S N =2.3±1.1 for NGC 6702. We predict that passive evolution of NGC 6702 will further increase its specific frequency to S N ≈2.7 within 10 Gyr, in closer agreement to that of typical present-day ellipticals. We also discuss evidence that the merger/accretion event that took place a few Gyr ago involved a high gas fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号