首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Feldspar and clastic debris are the most important constituent framework grains of sedimentary clastic rocks and their chemical dissolution plays an essential role in the formation and evolution of the secondary pore in the reservoir rocks. On the basis of thermodynamic phase equilibrium, this study investigates the chemical equilibrium relationships between fluid and various plagioclase and K-feldspar in diagenesis of the sediments, particularly, the impact of temperature and fluid compositions (pH, activity of K+, Na+, Ca2+ and so on) on precipitation and dissolution equilibria of feldspars. Feldspar is extremely easily dissolved in the acid pore water with a low salinity when temperature decreases. The dissolution of anorthite end-member of plagioclase is related to the Ca content of the mineral and the fluid, higher Ca either in the mineral or in the fluid, easier dissolution of the feldspar. Moreover, the dissolution of albite end-member of plagioclase is related to Na of both the mineral and fluid,  相似文献   

2.
A general one-dimensional diagenetic equation is derived which expresses the effect of the following processes upon the depth and time distribution of a dissolved species in a modern subaqueous sediment: adsorptive or ion exchange equilibrium between pore water and grain surfaces; slower chemical or radiogenic reactions in the pore solution and on the grain surfaces; diffusion in solution and on grain surfaces; advection of grains due to depositional burial; and advection of water due both to burial and to flow past the grains. It is shown that the effects of equilibrium adsorption can be expressed in terms of a lowered diffusion coefficient only in the special case where there is negligible flow of water relative to grains, adsorption is described by a simple linear isotherm, and there is nochemical reaction occurring in the sediment (i.e. only radioactive decay or no reaction at all). Consideration of a commonly used special case of the general equation indicates that if equilibrium adsorption is strong, the depositional term in the resulting diagenetic equation may become quantitatively as important as the terms for diffusion and chemical reaction. Thus, when modelling diagenesis, deposition often cannot be ignored. A coupled pair of differential equations are also derived which express the steady state depth distribution for two ions exhibiting equilibrium ion exchange while undergoing chemical reaction, diffusion, and deposition.  相似文献   

3.
Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-plastic transition. As the bottom of seismogenic fault, the dynamic characteristics of the frictional-plastic transition zone and plastic zone are very important for the seismogenic fault during seismic cycles. Granite is the major composition of the crust in the brittle-plastic transition zone. Compared to calcite, quartz, plagioclase, pyroxene and olivine, the rheologic data of K-feldspar is scarce. Previous deformation studies of granite performed on a quartz-plagioclase aggregate revealed that the deformation strength of granite was similar with quartz. In the brittle-plastic transition zone, the deformation characteristics of granite are very complex, temperature of brittle-plastic transition of quartz is much lower than that of feldspar under both natural deformation condition and lab deformation condition. In the mylonite deformed under the middle crust deformation condition, quartz grains are elongated or fine-grained via dislocation creep, dynamic recrystallization and superplastic flow, plagioclase grains are fine-grained by bugling recrystallization, K-feldspar are fine-grained by micro-fractures. Recently, both field and experimental studies presented that the strength of K-feldspar is much higher than that of quartz and plagioclase. The same deformation mechanism of K-feldspar and plagioclase occurred under different temperature and pressure conditions, these conditions of K-feldspar are higher than plagioclase. The strength of granite is similar to feldspar while it contains a high content of K-feldspar. High shear strain experiment studies reveal that granite is deformed by local ductile shear zones in the brittle-plastic transition zone. In the ductile shear zone, K-feldspar is brittle fractured, plagioclase are bugling and sub-grain rotation re-crystallized, and quartz grains are plastic elongated. These local shear zones are altered to local slip-zones with strain increasing. Abundances of K-feldspar, plagioclase and mica are higher in the slip-zones than that in other portions of the samples (K-feldspar is the highest), and abundance of quartz is decreased. Amorphous material is easily formed by shear strain acting on brittle fine-grained K-feldspar and re-crystallized mica and plagioclase. Ductile shear zone is the major deformation mechanism of fault zones in the brittle-plastic transition zone. There is a model of a fault failed by bearing constant shear strain in the transition zone:local shear zones are formed along the fractured K-feldspar grains; plagioclase and quartz are fine-grained by recrystallization, K-feldspar is crushed into fine grains, these small grains and mica grains partially change to amorphous material, local slip-zones are generated by these small grains and the amorphous materials; then, the fault should be failed via two ways, 1)the local slip-zones contact to a throughout slip-zone in the center of the fault zone, the fault is failed along this slip-zone, and 2)the local slip-zones lead to bigger mineral grains that are in contact with each other, stress is concentrated between these big grains, the fault is failed by these big grains that are fractured. Thus, the real deformation character of the granite can't be revealed by studies performing on a quartz-plagioclase aggregate. This paper reports the different deformation characters between K-feldspar, plagioclase and quartz under the same pressure and temperature condition based on previous studies. Then, we discuss a mode of instability of a fault zone in the brittle-plastic transition zone. It is still unclear that how many contents of weak mineral phase(or strong mineral phase)will control the strength of a three-mineral-phase granite. Rheological character of K-feldspar is very important for study of the deformation characteristic of the granitic rocks.  相似文献   

4.
The reservoirs of the Upper Triassic Xujiahe Formation in Sichuan Basin have the characteristics of low compositional maturity, low contents of cements and medium textural maturity. The general physical properties of the reservoirs are poor, with low porosity and low permeability, and there are only a few reservoirs with medium porosity and low permeability in local areas. Based on the diagenetic mineral association, a diagenetic sequence of cements is established: early calcites (or micrite siderites) →first quartz overgrowth→chlorite coatings→dissolution of feldspars and debris→chlorite linings→ second quartz overgrowth (quartz widen or filled in remain intergranular pores and solution pores)→dissolution→third quartz overgrowth (quartz filled in intergranular and intragranular solution pores)→intergrowth (ferro) calcites→dolomites→ferro (calcites) dolomites→later dissolution→veins of quartz and calcites formation. Mechanical compaction is the main factor in making the reservoirs tight in the basin, followed by the second and third quartz overgrowth. In a long-term closed system, only feld-spars and some lithic fragments are dissolved by diagenetic fluids, while intergranular cements such as quartz and calcit are not dissolved and thus have little influence on the porosity of the Xujiahe Formation. This is the third factor that may have kept the sandstones of Xujiahe Formation tight finally. The hydrocarbon was extensively generated from organic materials after the second quartz overgrowth, and selectively entered favorable reservoirs to form tight sandstone gas reservoirs.  相似文献   

5.
Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the B stage of early diagenesis the important development period of secondary porosity.  相似文献   

6.
Controls on sonic velocity in carbonates   总被引:2,自引:0,他引:2  
Compressional and shear-wave velocities (V p andV s) of 210 minicores of carbonates from different areas and ages were measured under variable confining and pore-fluid pressures. The lithologies of the samples range from unconsolidated carbonate mud to completely lithified limestones. The velocity measurements enable us to relate velocity variations in carbonates to factors such as mineralogy, porosity, pore types and density and to quantify the velocity effects of compaction and other diagenetic alterations.Pure carbonate rocks show, unlike siliciclastic or shaly sediments, little direct correlation between acoustic properties (V p andV s) with age or burial depth of the sediments so that velocity inversions with increasing depth are common. Rather, sonic velocity in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes, such as cementation or dissolution, which results in fabrics specific to carbonates. These diagenetic fabrics can be directly correlated to the sonic velocity of the rocks.At 8 MPa effective pressureV p ranges from 1700 to 6500 m/s, andV s ranges from 800 to 3400 m/s. This range is mainly caused by variations in the amount and type of porosity and not by variations in mineralogy. In general, the measured velocities show a positive correlation with density and an inverse correlation with porosity, but departures from the general trends of correlation can be as high as 2500 m/s. These deviations can be explained by the occurrence of different pore types that form during specific diagenetic phases. Our data set further suggests that commonly used correlations like Gardner's Law (V p-density) or the time-average-equation (V p-porosity) should be significantly modified towards higher velocities before being applied to carbonates.The velocity measurements of unconsolidated carbonate mud at different stages of experimental compaction show that the velocity increase due to compaction is lower than the observed velocity increase at decreasing porosities in natural rocks. This discrepancy shows that diagenetic changes that accompany compaction influence velocity more than solely compaction at increasing overburden pressure.The susceptibility of carbonates to diagenetic changes, that occur far more quickly than compaction, causes a special velocity distribution in carbonates and complicates velocity estimations. By assigning characteristic velocity patterns to the observed diagenetic processes, we are able to link sonic velocity to the diagenetic stage of the rock.  相似文献   

7.
Chemical reactions of plagioclase, biotite and their single minerals, as well as a mineral mixture of (plagioclase+biotite+quartz), with KCl and (KCl+KHCO3) solutions were carried out at 150–400°C and 50–80 MPa. Experiments show that alkaline fluid promotes plagioclase’s changing into potash feldspar, while acid fluid helps plagioclase, potash feldspar and biotite alteration form chlorite and sericite. After chemical reaction the acidity-alkalinity of solutions often changes reversely. It was observed that gold dissolved from the tube wall and recrystallized on the surfaces of biotite and pyrite. Therefore the transportation and enrichment of gold are related to the elementary effect of the fluid-mineral interfaces. Fe3+-Fe2+, as an oxidition-reduction agent, and volatile components Cl- and CO2 play important roles in the reaction process  相似文献   

8.
Chemical reactions of plagioclase, biotite and their singleminerals, as well as a mineral mixture of (plagioclase +biotite+quartz), with KCl and (KCl+KHCO3) solutions were carried out at 150400℃ and 5080 MPa. Experiments show that alkaline fluid promotes plagioclase’s changing into potash feldspar, while acid fluid helps plagioclase, potash feldspar and biotite alteration form chlorite and sericite. After chemical reaction the acidity-alkalinity of solutions often changes reversely. It was observed that gold dissolved from the tube wall and recrystallized on the surfaces of biotite and pyrite. Therefore the transportation and enrichment of gold are related to the elementary effect of the fluid-mineral interfaces. Fe3+-Fe2+, as an oxidition-reduction agent, and volatile components Cl? and CO2 play important roles in the reaction process.  相似文献   

9.
Dissolution of igneous feldspar and the formation and occurrence of secondary feldspar in tholeiitic basalts from the Hengill volcanic centre, in SW Iceland was studied by microprobe analysis of cuttings from two ca. 2000 m deep geothermal wells. Well NG-7 in Nesjavellir represents a geothermal system in a rift zone where the intensity of young, insignificantly altered intrusions increases with depth. Well KhG-1 in Kolviðarhóll represents the margin of a rift zone where the intensity of intrusives is lower and the intensity of alteration higher. This marginal well represents altered basaltic crust in an early retrograde state. The secondary plagioclase in both wells is mainly oligoclase, occurring in association with K-feldspar and chlorite±actinolite. The texture of this assemblage depends on the lithology and intensity of alteration. In Nesjavellir (NG-7) the composition of secondary albite-oligoclase is correlated with the host-rock composition. This connection is not apparent in more intensely altered samples from Kolviðarhóll (KhG-1). The influence of temperature on composition of secondary Na-feldspar is unclear in both wells although Ca is expected to increase with temperature. Any temperature dependence may be suppressed by the influence of rock composition in Nesjavellir and by retrograde conditions at Kolviðarhóll. The absence of clear compositional gradients between igneous plagioclase and secondary feldspar and between Na-feldspar and K-feldspar suggests that secondary feldspars formed by dissolution precipitation reactions.  相似文献   

10.
Contaminated sediments deposited within urban water bodies commonly exert a significant negative effect on overlying water quality. However, our understanding of the processes operating within such anthropogenic sediments is currently poor. This paper describes the nature of the sediment and early diagenetic reactions in a highly polluted major urban water body (the Salford Quays of the Manchester Ship Canal) that has undergone remediation focused on the water column. The style of sedimentation within Salford Quays has been significantly changed as a result of remediation of the water column. Pre‐remediation sediments are composed of a range of natural detrital grains, predominantly quartz and clay, and anthropogenic detrital material dominated by industrial furnace‐derived metal‐rich slag grains. Post‐remediation sediments are composed of predominantly autochthonous material, including siliceous algal remains and clays. At the top of the pre‐remediation sediments and immediately beneath the post‐remediation sediments is a layer significantly enriched in furnace‐derived slag grains, input into the basin as a result of site clearance prior to water‐column remediation. These grains contain a high level of metals, resulting in a significantly enhanced metal concentration in the sediments at this depth. Porewater analysis reveals the importance of both bacterial organic matter oxidation reactions and the dissolution of industrial grains upon the mobility of nutrient and chemical species within Salford Quays. Minor release of iron and manganese at shallow depths is likely to be taking place as a result of bacterial Fe(III) and Mn(IV) reduction. Petrographic analysis reveals that the abundant authigenic mineral within the sediment is manganese‐rich vivianite, and thus Fe(II) and Mn(II) released by bacterial reactions may be being taken up through the precipitation of this mineral. Significant porewater peaks in iron, manganese and silicon deeper in the sediment column are most probably the result of dissolution of furnace‐derived grains in the sediments. These species have subsequently diffused into porewater above and below the metal‐enriched layer. This study illustrates that the remediation of water quality in anthropogenic water bodies can significantly impact upon the physical and chemical nature of sedimentation. Additionally, it also highlights how diagenetic processes in sediments derived from anthropogenic grains can be markedly different from those in sediments derived from natural detrital material. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Mixed carbonate and siliciclastic marine sediments commonly become freshwater aquifers in eastern coastal regions of the United States and many other global locations. As these deposits age, the carbonate fraction of the sediment is commonly removed by dissolution and the aquifer can become a solely siliciclastic system or contain zones or beds of pure quartz sand. During aquifer evolution, the sediment grain size characteristics, hydraulic conductivity, and porosity change. An investigation of these changes using mixed carbonate/siliciclastic sediment samples collected from a modern barrier island beach in southern Florida showed that the average mean grain diameter decreased with removal of the carbonate fraction, but the average hydraulic conductivity and porosity increased slightly, but not to statistical significance. This counterintuitive result occurs because of the change in the pore types from a combined shelter and intergranular pore system producing a dual porosity system in the mixed sediments to a single intergranular pore system in the siliciclastic sediment fraction. Within the mixed carbonate/siliciclastic sediment, in the pure carbonate fraction, large shell fractions form grain‐supported large pores, which become filled with sand‐sized quartz as the shell fragments decrease in size or as the sediment becomes compacted. The hydraulic conductivity increases because the shell fragments that were oriented perpendicular to flow caused an increase in the length of the flow path, or a larger scale tortuosity, compared with the flow through pure quartz sand.  相似文献   

12.
In the Arctic Ocean, direct dating methods are needed as an alternative to the radiocarbon (14C) method and to various indirect approaches for a longer stratigraphy. In past attempts to develop a luminescence sediment dating, the use of fine-silt (4–11 μm) mixture of quartz and feldspar grains from core tops has often produced large age overestimates by several ka. A recent application of micro-focused laser (‘micro-hole’) photon-stimulated luminescence (PSL) to medium-silt to fine-sand quartz grains (11–105 μm) from the core tops at the Alaska margin has been usefully accurate. To extend this approach to the central Arctic Ocean and to a larger grain size range, we applied micro-hole PSL dating to >11 μm quartz grains from core tops (0.5–2 cm horizon) from two sites on the central Lomonosov Ridge. We obtain a burial age estimate of ca. 2 ka for 11–62 μm grains at a multicore site 18 MC within a perched intra-ridge basin, in accord with 14C ages obtained on foraminifers. At nearby site 19 MC on the erosive ridge top, the micro-hole PSL dating of >90 μm quartz grains produces a burial age estimate of ∼ca. 25 ka, in accord with a foraminiferal 14C age of ca. 26 ka. However, the 11–90 μm grains from the same sample produce a much younger burial age estimate of ca. 9 ka. Thus, these two size fractions of quartz grains record different burial times and different deposition agents (icebergs vs. sea ice), providing insight into past sedimentary processes. Overall, our results confirm an earlier conclusion from micro-hole PSL dating study at the Alaska margin that medium to coarse silt fractions of quartz grains (11–90 μm or at least 62 μm) is the preferred material for direct dating of the last daylight exposure of detrital sediment in the Arctic Ocean.  相似文献   

13.
Magnetite, haematite, and to a minor extent maghaemite are recognised in the Cretaceous and Paleocene red pelagic limestones at Gubbio. The magnetite is detrital (or biological), whereas the haematite grew during diagenesis from a goethitic precursor. Thermal and AF demagnetization of samples collected from close to reversal boundaries indicate that the various magnetization components do not record the polarity reversal at exactly the same stratigraphic level. In the few tens of centimetersbelow a recorded geomagnetic reversal, defined by the magnetite magnetization, some of the haematite grains are magnetized in the post-reversal field. The blocking temperature spectra of this haematite fraction (with post-reversal magnetization) are found to shift toward higher temperatures as the reversal boundary is approached. The blocking temperature spectra reflect the grain size spectra of the haematite, which we interpret as arising by the continual nucleation of grains down to a certain burial depth where the conditions are no longer conducive to further haematite growth. The depth below reversal boundaries to which haematite with post-reversal magnetization can occur, is estimated to be about 60 cm (after compaction), and is equivalent to a time of about 105 years for these particular sediments. A detailed study of the magnetization components at reversal boundaries indicates that the first diagenetic growth of haematite through the single-domain critical volume occurs prior to the mechanical fixation of the detrital (or biological) magnetite. Subsequently the diagenetic haematite grains do not rotate in response to the ambient geomagnetic field polarity as easily as the magnetite, because of their occurrence as pigmentary coatings on larger non-magnetic grains.  相似文献   

14.
Computer simulations are used to calculate the elastic properties of model cemented sandstones composed of two or more mineral phases. Two idealized models are considered – a grain‐overlap clay/quartz mix and a pore‐lining clay/quartz mix. Unlike experimental data, the numerical data exhibit little noise yet cover a wide range of quartz/cement ratios and porosities. The results of the computations are in good agreement with experimental data for clay‐bearing consolidated sandstones. The effective modulus of solid mineral mixtures is found to be relatively insensitive to microstructural detail. It is shown that the Hashin–Shtrikman average is a good estimate for the modulus of the solid mineral mixtures. The distribution of the cement phase is found to have little effect on the computed modulus–porosity relationships. Numerical data for dry and saturated states confirm that Gassmann's equations remain valid for porous materials composed of multiple solid constituents. As noted previously, the Krief relationship successfully describes the porosity dependence of the dry shear modulus, and a recent empirical relationship provides a good estimate for the dry‐rock Poisson's ratio. From the numerical computations, a new empirical model, which requires only a knowledge of system mineralogy, is proposed for the modulus–porosity relationship of isotropic dry or fluid‐saturated porous materials composed of multiple solid constituents. Comparisons with experimental data for clean and shaly sandstones and computations for more complex, three‐mineral (quartz/dolomite/clay) systems show good agreement with the proposed model over a very wide range of porosities.  相似文献   

15.
Analysis of the etch-pit size distributions (PSDs) observed on potassium feldspar and hornblende grains in a soil catena in loess (age = 12,500 y) reveals natural mineral etching rates. Rates estimated for hornblende (6 to 9×10–15mol/m2s) are based on consistent crystallographically controlled etch pits, while rates estimated for potassium feldspar (2×10–15mol/m2s) are based on irregularly shaped pits. Although little difference in etching rate is observed between soil horizons, the highest etching rates generally occur in the upper B horizons where pH values are lowest. Decreasing soil drainage correlates with an increase in pit density,n°, probably due to increased grain wetting, while decreased drainage correlates with a decrease in pit growth rate (G), probably due to increased dissolved solute concentrations. The PSD model predicts that etching rate is a function ofn° and ofG 4. Etching rates calculated for potassium feldspar do not vary with drainage, while those of hornblende decrease with decreasing drainage. Estimated etching rates are lower than bulk dissolution rates measured in the laboratory.  相似文献   

16.
Cataclasites and mylonites, and the brittle-ductile processes that produce them, were studied at exposures along the northern rim of the Grong culmination, a transverse basement antiform in the central Scandinavian Caledonides. The rock suite studied is composed of gneisses, mylonites, and cataclasites which have a granodioritic composition. The microstructure of the rocks appears to be the result of repeated alternations of brittle faulting (associated with hydrothermal mineral growth) and ductile deformation of the crystallization products. During brittle faulting K-feldspar-chlorite veins are formed, probably by incongruent pressure solution of micas. During plastic deformation of the rocks the mineral association is transformed to white mica and green biotite, according to the reaction. $$5 biotite + 3 white mica + 9 quartz + 4 H_2 O = 8 K - feldspar + 9 chlorite$$ During this reaction plagioclase is overgrown by mica and epidote, and K-feldspar crystals are replaced by albite. The reactions which involve K-feldspars are cyclic: K-feldspar that is generated in cracks tends to be removed by albitization during ductile deformation. It is concluded that the mylonites studied represent a movement zone in the Earth's crust in which seismic and aseismic slip alternated during a large part of the deformation history.  相似文献   

17.
Detailed petrography and modal analysis of 35 sandstone thin sections was carried out to determine petrotectonic setting of the provenance of the Lower Siwalik molasse of southeastern Kumaun Himalaya. The sandstones are fine‐ to coarse‐grained (0.14–0.63 mm), poorly‐ to moderately‐sorted and comprise lithic arenites, sublithic arenites and lithic greywackes. The sandstones invariably belong to the quartzolithic QtFL (Qt, total quartz; F, feldspar; L, lithic grains) and QmFLt (Qm, monocrystalline quartz; Lt, lithic grains plus polycrystalline quartz) petrofacies, and indicate their derivation from a quartzose‐ and transitional‐recycled orogen provenance under sub‐humid climatic conditions. The framework composition of the sandstones comprises abundant monocrystalline and polycrystalline quartz and low‐ to high‐grade metamorphic rock fragments, along with subordinate feldspar, characterized by low ratios of plagioclase to total feldspar, and accessory minerals. The framework composition and petrofacies characters of these texturally submature sandstones suggest their derivation mainly from the nearby located Great Himalaya terrane and subordinately from the Tethys and Lesser Himalayan terranes. A comparison of the data presented here with the previous similar data from Lower Siwalik of northwestern Pakistan, northwestern India, south‐central Kumaun, western Nepal and southeastern Nepal reveals that like the Lower Siwalik rivers in other sections, the Lower Siwalik rivers of the southeastern Kumaun too drained large parts of the Great Himalayan terrane and some parts of the Tethys and Lesser Himalayan terranes.  相似文献   

18.
The formation of hematite and goethite concretions in different sedimentary rocks including sandstones is an important diagenetic process in the geologic history of the Earth. Its interpretation can also contribute to understanding the diagenetic history of Martian iron hydroxide concretions. A case study of iron-rich concretions from Estonian Middle Devonian sandstones exposed in ancient river valleys in southeastern Estonia was carried out based on the results of mineralogical, petrographical, geochemical, petrophysical and magnetic analyses. It was found that the high Fe2O3(total) content (25.0–39.5%), high magnetic susceptibility, bulk and grain density, very low porosity, corrosion and fracturing of the quartz grains of the platy iron concretions are in contrast with properties of the Devonian host sandstones. However the ferrous iron content (measured as FeO) of iron-rich concretions was as low as in the other Devonian rocks, suggesting an oxidizing environment and arid climate during the cementation by iron-hydroxides. The fracturing of quartz grains cemented by iron hydroxides could take place at near-surface conditions including vadose and phreatic zones in arid climate with high evaporation rates. Such climatic conditions have been reported for the Baltic region during Devonian, Upper Permian and Triassic times. We have found that goethite is prevalent in the cement, replacing clay and carbonate minerals. We assume that this iron-rich cement is originated from the mobilization of iron in host sandstones by groundwater, associated with tectonic activity at the end of the Middle Devonian, evidenced by fracturing in Devonian outcrops and caves. Although this mobilization could occur under reducing conditions, precipitation of goethite and hematite for the cementation could take place in oxidizing environment along bedding planes close to the surface during short sedimentation breaks. Another possible time for the formation of iron concretions could be Permian, under the condition of both arid climate and tectonic activity.  相似文献   

19.
The reservoir quality of Jurassic and Triassic fluvial and lacustrine-deltaic sandstones of the Yanchang Oil Field in the Ordos Basin is strongly influenced by the burial history and facies-related diagenetic events. The fluvial sandstones have a higher average porosity (14.8%) and a higher permeability (12.7×10?3 ?m2) than those of the deltaic sandstones (9.8% and 5.8 ×10?3 ?m2, respectively). The burial compaction, which resulted in 15% and 20% porosity loss for Jurassic and Triassic sandstones, respectively, is the main factor causing the loss of porosity both for the Jurassic and Triassic sandstones. Among the cements, carbonate is the main one that reduced the reservoir quality of the sandstones. The organic acidic fluid derived from organic matter in the source rocks, the inorganic fluid from rock-water reaction during the late diagenesis, and meteoric waters during the epidiagenesis resulted in the formation of dissolution porosity, which is the main reason for the enhancement of reservoir-quality.  相似文献   

20.
The present study aimed to test reliability of luminescence and electron spin resonance (ESR) methods to date tephra. We investigated on three Japanese marker tephras, Ikeda-ko (6.4 ka), Aira-Tn (30 ka) and Aira-Iwato (45–50 ka). A systematic studies were performed using different minerals (quartz and feldspar), different grain fractions (75–250 and 250–500 μm), different luminescence and ESR signals, like optically stimulated luminescence (OSL) of quartz, infrared stimulated luminescence (IRSL) of feldspar, including recently developed least faded post infrared IRSL (pIR-IRSL), and ESR signals from paramagnetic centers Al and Ti–Li of quartz. Ages obtained using pIR-IRSL signal of plagioclase with preheat of 320 °C, 60 s and stimulation at 300 °C are consistent with the reference ages. High dose detection range (up to ∼600 Gy) and accurate age estimation enable pIR-IRSL of feldspar a promising methodology to date quaternary tephra. ESR ages from quartz are grossly correlated with the reference ages but large deviation and large associated errors are observed, possibly due to either low signal to noise ratio or heterogenous dose response of different aliquot in multiple aliquot additive dose (MAAD) approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号