首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a paleolimnological record spanning the Holocene from a small lake on Russell Island (Lake PW02), in the central Canadian Arctic Archipelago (74.07° N, 97.77° W, 182 m asl). Fragilarioid diatom types in the genera Pseudostaurosira, Staurosira and Staurosirella constitute >90% of valves in fossil samples. Using modern biogeographic data which specify the temperature optima of the Fragilarioid diatom taxa, we present new inferences about the timing of paleoclimatic changes in the central Arctic islands. The early Holocene was characterized by maximum values for sediment organic matter, and lower ratios of Staurosirella pinnata to Staurosira construens v. venter, suggesting warm summer air temperatures between about 9500−6500 cal year BP. Influxes of biogenic silica and diatom valves decreased following 4000 cal year BP, the sediment accumulation rate slowed and diatom taxa of the littoral zone diversified, suggesting cooler summers and more persistent lake ice. Variations in the species composition of the assemblages indicate paleoclimatic changes that are in broad agreement with other paleoenvironmental records from the Arctic including melt records from the Agassiz Ice Cap. Although autecological data remain incomplete for Fragilarioid taxa, our results indicate differences in these taxa in responses to paleoenvironmental change and underline the potential for the increased use of these taxa in paleoenvironmental reconstructions. The record from Lake PW02, as in other records from Arctic lakes with low algal diversity throughout the Holocene, shows a pronounced increase in diatom diversity since the 1920s, and diatom production since the 1970s far exceeds any recorded during the Holocene.  相似文献   

2.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

3.
A 12 m sediment core recovered from the south basin of Lake Turkana, northwestern Kenya, reveals four major diatom assemblages that span approximately 5450 to 1070 years BP based on AMS radiocarbon analyses. The oldest assemblage, Zone D (5450 to 4850 yr BP), is dominated by Melosira nyassensis and Stephanodiscus spp. and is interpreted to reflect higher lake levels, fresher water and more variable seasonal mixing of the water column than the modern lake. Melosira dominates the assemblage in Zone C (4850 to 3900 yr BP) with some Surirella engleri and Stephanodiscus. This assemblage indicates a continuation of relatively high lake levels and seasonal mixing of a stratified lake. The brief peak of Surirella, interpreted as benthic, suggests an episode of slightly lower lake level. Thalassiosira rudolfi and Surirella predominate since the beginning of Zone B (3900 to 1900 yr BP), reflecting a decrease in lake level and increase in water column salinity. Increasing dominance of Surirella in Zone A (1900 to 1070 yr BP) may suggest that the lake continued to decrease in depth. Salinity probably rose to levels comparable with the modern lake. These results are consistent with paleoclimatic interpretations based on carbonate abundance, lamination thickness, oxygen isotope and bulk geochemistry profiles from this core and cores recovered from the north basin. It extends the known paleolimnology beyond 4000 yr BP of the earlier research to 5450 yr BP and into the early to mid Holocene pluvial phase in northern intertropical east Africa.  相似文献   

4.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

5.
We recovered a sediment core (DL04) from the depocenter of Dali Lake in central-eastern Inner Mongolia. The upper 8.5 m were analyzed at 1-cm intervals for grain-size distribution to partition the grain-size components and provide a high-resolution proxy record of Holocene lake level changes. Partitioning of three to six components, C1, C2, C3 through C6 from fine to coarse modes within the individual polymodal distributions, into overlapping lognormal distributions, was accomplished utilizing the method of lognormal distribution function fitting. Genetic analyses of the grain-size components suggest that two major components, C2 and C3, interpreted as offshore-suspension fine and medium-to-coarse silt, can serve as sediment proxies for past changes in the level of Dali Lake. Lower modal sizes of both C2 and C3 and greater C3 and lower C2 percentages reflect higher lake stands. The proxy data from DL04 core sediments span the last 12,000 years and indicate that Dali Lake experienced five stages during the Holocene. During the interval ca. 11,500–9,800 cal year BP, lake level was unstable, with drastic rises and falls. Following that interval, the lake level was marked by high stands between ca. 9,800 and 7,100 cal year BP. During the period from ca. 7,100 to 3,650 cal year BP, lake level maintained generally low stands, but displayed a slight tendency to rise. Subsequently, the lake level continued rising, but exhibited high-frequency, high-amplitude fluctuations until ca. 1,800 cal years ago. Since ca. 1,800 cal year BP, the lake has displayed a gradual lowering trend with frequent fluctuations.  相似文献   

6.
This study presents changes in diatom flora assemblage composition, TOC, TOC/N and biogenic opal in a 450 cm core of Lake Panch Pokhari, Central Nepal (4,050 m asl), indicating Late Quaternary environmental fluctuations. Four Diatom Zones (DZ) were detected, with two major changes. The first one was found in ~430 cm depth (~14.8 cal. kyr BP), where the original flora characterized by Navicula digitulus Hustedt, Pinnularia rhombarea Krammer, P. aff. viridiformis var. minor Krammer, Encyonema silesiacum (Bleisch) D. G. Mann, Cymbopleura naviculiformis (Auerswald) Krammer and Nitzschia sp. was fully replaced by an assemblage consisting of Aulacoseira alpigena (Grunow) Krammer, Diatoma hyemalis (Roth) Heib., Tabellaria flocculosa (Ehrenberg) Kützing, Brachysira brebissonii Ross and Pinnularia subgibba Krammer, creating a stable diatom assemblage for ~8 kyr (DZ3). The second change was found at ~70 cm (~2.1 cal. kyr BP) when increased nutrient inputs lead to emergence of new taxa such as Fragilaria construens var. subsalina Hustedt, F. tenera (W. Smith) Lange-Bertalot, Eunotia cf. pseudopapilio Lange-Bertalot and M. N?rpel-Schempp and Gomphonema subclavatum Grunow. In order to evaluate the past environmental conditions in the Lake Panch Pokhari, the detected diatom taxa were subjected to analyses of their autecological preferences and dominance within the specific assemblage. We also assumed that TOC/N ratios >10 indicate accelerated erosion due to the strengthening of the Summer Monsoon starting at ~14.8 and between 13.7 and 12.8 cal. kyr BP. Monsoon intensity was most pronounced during the Early Holocene and at the beginning of the Late Holocene. The fluctuations of TOC and TOC/N in the Late Glacial sediments seem to correlate temporally and climatically with oscillations in the Northern Atlantic region.  相似文献   

7.
A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a 210Pb/137Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The 210Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high 210Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures.  相似文献   

8.
Swan Lake is a small kettle lake located on the Oak Ridges Moraine; a moraine that is recognized as an important source of ground water for the nearby and rapidly expanding Greater Toronto Area. A paleolimnological reconstruction using pollen and diatoms from the lake sediments showed significant changes in biological community composition through the last ∼400 years. Alterations in the diatom and pollen assemblages were most dramatic ca. A.D. 1850, correlating with the highest sediment flux in the lake between the period ca. A.D. 1850 and A.D. 1870. These changes were directly linked to regional deforestation and agricultural activities associated with European settlement. The pollen record from ca. A.D. 1850 to present day indicated that tree species (e.g. Pinus spp., Tsuga canadensis) were declining, while grass (Poaceae) and invasive species (e.g. Ambrosia) were increasing. Around A.D. 1850, the diatom flora changed from an assemblage dominated by large, benthic species (e.g. Sellaphora pupula, Pinnularia cf. maior, and Stauroneis phoenicenteron) to an assemblage characterized by smaller, tychoplanktonic (e.g. Fragilaria tenera, Staurosirella pinnata) and epiphytic (e.g. Achnanthidium minutissimum, Rossithidium linearis) taxa. This diatom community change supports the intermediate disturbance hypothesis which predicts a high level of diversity and richness following an intermediate to intense disturbance of short duration. Phosphorus concentrations in Swan Lake were inferred using a diatom-based regional calibration model, and the results indicated marked changes in lake water chemistry through time (from below detection limits before land clearance and settlement to 19.3 μg l−1 in the current sediments), which were concurrent with episodes of regional deforestation and land-use change. Although the sediment and biological records indicate that the lake ecology has stabilized over the last 30–50 years, paleolimnological records show that the water quality and biology of Swan Lake has changed dramatically and not returned to pre-settlement conditions. Swan Lake presents a detailed record of the impact created by deforestation and urban development with a population of <50 individuals per km2. Detailed paleolimnological studies like Swan Lake, in tandem with global human footprint studies, can create realistic estimates of land-use impacts at the global scale.  相似文献   

9.
This study aimed to reconstruct the history of soil development, ecosystem changes and associated erosional processes in a small mountain lacustrine basin at the decennial to millennial scale. Geochemical proxies of soil evolution were analysed in the Holocene lacustrine sediments and peats from Thyl Lake, Maurienne Valley, French Alps. Podzolization and chemical weathering processes were assessed using secondary Al- and Fe-bearing phases together with major and Rare Earth Elements (REE). The resulting proxy records, spanning ca. 4,400 years between 8.6 and 4.2 cal ka BP, indicate that progressive pedogenesis occurred after deglaciation in a relatively stable subalpine ecosystem. As shown by the associated increase in Al- and Fe-bearing phases and some REE fractions, the establishment of a mixed cembra pine ecosystem from ca. 7.2–6.5 ka BP was associated with enhanced podzolisation processes in the catchment. The progressive soil development was followed by a rapid transformation of the local environment and plant cover (the open waters of the lake were replaced by a confined peat environment) together with changes in forest fire regimes from ca. 6.8 ka BP. Depleted REE patterns, associated with low contents of secondary Al and Fe, suggest a decrease in chemical weathering and podzolization in the catchment at that time, possibly associated with local intensification of weathering and drainage processes in a relatively acidic peat environment. The higher variability of cembra pine and the increased abundance of sedge and other herbaceous plant remains in the lake sediment indicate semi-open vegetation environments from 5.7 cal ka BP onwards. Whereas fire events and plant cover appear to be significantly related, the soil processes seem primarily linked to vegetation composition, and secondarily to changes in fire regime.  相似文献   

10.
A sedimentary blue-green algal record has been investigated through measurement of myxoxanthophyll and oscillaxanthin in two cores taken from deep and shallow sites in Lake Wabamun, Alberta, Canada (Longitudes 114° 26 and 114° 44 W; Latitudes 50° 30 and 50° 35 N). Blue-green algae have been a component of the algal flora of this lake throughout the Holocene period. Myxoxanthophyll and oscillaxanthin maxima occur in early Holocene sediments (ca. 9000 years BP), whereas oscillaxanthin concentrations are high between 7000 and 3800 years BP. High oscillaxanthin levels suggest that a phytoplankton assemblage, which included Oscillatoria spp., existed during this latter period and the lake was more eutrophic than at present. Decreases in the number of planktonic diatoms in the core from the deep site (Seba core) appear to be related to increased eutrophy, increased salinity, and sediment redistribution as well as possible competition with Oscillatoria. That the lake has been less productive during the last 2500 years in supported by the diatom record, the diatom: chrysophyte statospore (stomatocyst) ratio and concentrations of the blue-green algal pigments. In the core from the shallow site (Moonlight Bay) concentrations of blue-green algal pigments are initially high, which along with the diatom assemblage, indicates a younger basal age of the sediments. It is possible that benthic blue-green algae contributed significantly to sedimentary pigment concentrations in the Moonlight Bay core. Major fluctuations in the Osc: Myx ratio, particularly in the Seba core, casts some doubt upon the usefulness of this ratio, and suggests that it is not degradation-independent.  相似文献   

11.
The lipids in a sediment core from Lake Valencia, a hypereutrophic freshwater lake in Venezuela, are examined to understand environmental changes over the last ∼13,000 years. From the latest Pleistocene to the earliest Holocene, total organic carbon (TOC) substantially increased from 2.2 to 10%, while total organic carbon over total nitrogen (TOC/TN) decreased from as high as 34 to as low as 10. Correspondingly, the concentration of terrestrially derived triterpenoids markedly decreased, and the dominant n-alkane shifted from C31 to C23 or C25. During the same period, algal biomarkers such as botryococcenes, dinosterol, isoarborinol, C20 HBIs and 1,15C32 keto-ol markedly increased in abundance. These changes suggested a greater contribution of algal organic matter at the onset of the Holocene, which was concurrent with increasing rainfall and the formation of a permanent lake (Lake Valencia) in the Aragua Valley, Venezuela. The age profile of Paq, a n-alkane based proxy, showed large oscillations (0.20–0.81), reflecting historical variations in source strength of submerged/floating vs. terrestrial/emergent OM inputs. An abrupt increase in tetrahymanol abundance at ∼7,260 cal years BP suggests the establishment of an oxic–anoxic boundary in the lake’s water column. After reaching its maximum abundance at ∼2,100 cal year BP, botryococcenes, a biomarker of Botryococcus braunii, gradually decreased to below the detection limit in the uppermost sediments, while different algal/microbial biomarkers such as diploptene, dinosterol and isoarborinol substantially increased. These different historical profiles of algal/microbial biomarkers reflect different responses of source organisms to environmental changes throughout this period. The δ13C determinations presented exceptionally enriched values for botryococcene isomers (−7.7 to −15.1‰), indicating the utilization of bicarbonate as carbon sources in an extremely productive ecosystem.  相似文献   

12.
Diatom species counts were conducted on 171 sediment samples from the 13-m-long core PG1351 from Lake El’gygytgyn, northeast Siberia. The planktonic Cyclotella ocellata-complex dominates the diatom assemblage through most of the core record, persisting through a variety of climate conditions. Periphytic diatoms, although less abundant, have greater diversity and greater down-core assemblage variation. During warm climate modes, longer summer ice-free conditions may have allowed more complex diatom communities to develop in shallow-water habitats, and enhanced circulation may have increased transport of these diatoms to deeper parts of the lake. Zones of low overall diatom abundance further support inferred intervals of low lake productivity during times of extended lake ice and snow cover. More data on the modern spatial and temporal distribution of diatom species in the Lake El’gygytgyn system will improve inferences from core records. This is the last in a series of eleven papers published in this␣special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

13.
Diatom dissolution in saline lakes represents an important obstacle to the quantitative reconstruction of water chemistry and climate from lake sediment archives. This problem is here approached experimentally by artificially dissolving diatom-bearing core sediment from Lake Manyara, Tanzania. Manyara holds one of the longest continuous palaeolimnological records from tropical Africa although its interpretation is based on a fragmentary diatom record due to frustule dissolution. These experiments have revealed clear changes in assemblage composition as dissolution operated differentially with respect to diatom taxa. Differential dissolution has considerable impact on the water chemistry estimates derived from transfer functions. Taphonomy, rather than environmental change, may have been responsible for minor fluctuations in the diatom assemblages from Manyara, although major palaeohydrological changes during the Late Pleistocene and Early Holocene can be identified. Particularly well represented by MANE-87 is a period of intermediate lake level between 27 500 and 23 000 14C yr BP which has regional palaeohydrological significance.  相似文献   

14.
Holocene paleoenvironments of Harris Lake, southwestern Saskatchewan, are reconstructed from the ostracode stratigraphy of a 10.4 m sediment core. Twenty three taxa, representing nine genera, were identified and counted from 113 samples. At each depth, a theoretical faunal assemblage was derived from the raw counts. The mean and variance of chemical, climatic and physical variables were inferred from modern analogues of the fossil assemblages, using existing autecological data from 6720 sites, mostly in western Canada. These data suggest four paleoenvironments: an early-Holocene (9240–6400 years BP) variable climate supporting aspen parkland vegetation; the warm dry hypsithermal (6400–4500 years BP); a short transitional period of ameliorating climate and expanding subboreal forest (4500–3600 years BP); and the present environment since 3600 years BP. A change in regional climate with the draining of Glacial Lake Agassiz (ca. 8500 years BP) and landsliding in the watershed (ca. 4000 years BP) caused relatively rapid environmental change. The ostracode record generally corroborates the interpretations of other proxy data previously published for Harris Lake. Most of the discrepancy involves the timing and severity of maximum Holocene warmth and aridity. Peak aridity interpreted from the pollen data is earlier than in the other proxy records. Both the diatoms and ostracodes indicate highest paleosalinity between ca. 6500 and 5000 years BP, but maximum salinity in the diatom record occurs between ca. 6000–5700 years BP, whereas the ostracode-inferred salinity is relatively low at this time and peaks later at ca. 5000 years. Neither of these reconstructions suggests the short episodes of hypersalinity interpreted from the mineralogy.  相似文献   

15.
Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by 210Pb dating and covered a ~186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm−2 year−1 correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake’s history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation.  相似文献   

16.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

17.
Sediments from Tugulnuit Lake in the Okanagan Valley of British Columbia, Canada, were examined for chironomid assemblages. The chironomid stratigraphy obtained encompasses the last 4000 to 5000 years and suggests a warm and fairly stable climate typical for a temperate lake at low- to mid-elevation. This is indicated by the even distribution of warm-water taxa, such as Cladopelma, Dicrotendipes, Polypedilum, Pentaneurini, Stempellina, Stempellinella/Zavrelia and Pseudochironomus throughout the core. Very few cold-water taxa occurred in the sediments. However, stream inputs have had a major impact on Tugulnuit Lake. Sandy sediments and the appearance of Simuliidae and stream-inhabiting chironomid taxa (e.g., Brillia/Euryhapsis, Eukiefferiella/Tvetenia, Rheocricotopus) indicate that a stream intruded into the current lake's basin ca. 3800 yr Before Present (BP). Sediments deposited prior to, and after, the stream's intrusion show a distinctly different chironomid assemblage exhibiting chironomid taxa more typical for lentic habitats. This result indicates that chironomids can serve to detect past stream influences on lake environments. Thus, rheophilic chironomids preserved in lake cores provide a new alternative for reconstructing stream palaeoenvironmental records.  相似文献   

18.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

19.
The first account is given of the postglacial history of a lake in eastern Canada. Splan Lake is a 4 ha lake situated in a hollow in Palaeozoic metasedimentary rock in southern New Brunswick. Diatoms were identified and counted in a 6.98 m core, from which five developmental phases were recognized. Initially Splan Lake supported a pioneer Fragilaria assemblage comparable to that in modern arctic and glacial moraine lakes. This is believed to represent growth in the moat of a partially ice covered lake. An embryonic limnic flora consisting of Cyclotella bodanica and C. stelligera appeared ca. 11 300 y.B.P., which was terminated by the younger Dryas cool interval — ca. 11 000–10 000 y.B.P. There appeared to be no autochthonous production in Splan Lake during this latter episode. Subsequently, a C. bodanica: C. Stelligera: Navicula community developed. From ca. 8 800–5 500 y.B.P. Asterionella ralfsii v. americana, Tabellaria spp. and large numbers of chrysophyte scales occurred together with Cyclotella spp. The recent phase is dominated by Tabellaria, Frustulia, Fragilaria, Eunotia and Navicula. The lake evolved from alkaline to slightly acid, and from oligotrophic to mesotrophic following the younger Dryas. The flora developed from benthic/littoral to a predominantly littoral/limnic community over the same period, and with continued sedimentation, into a littoral/benthic diatom community.  相似文献   

20.
Environmental change in many tropical, alpine habitats remains poorly resolved due to an absence of proximate and sustained observations. In the Rwenzori Mountains of East Africa, glaciers have receded rapidly over the last century, and here we assess the impact of this recession through palaeolimnological analyses of a 45 cm sediment core (Buju3) from Lake Bujuku which is closest to the ice-fields and partly supplied by melt water in-flows. 210Pb and 137Cs suggest that Buju3 has an average sedimentation rate of 2.9 mm year−1 and the base of the core can be dated to 1864 ± 20 years. Contemporary diatom taxa found in the lake are dominated by Tabellaria flocculosa and Synedra spp., but also include Achnanthes minutissima and Fragilaria pinnata. However, the diatom flora for Buju3 is less diverse and dominated by small, tychoplanktonic species of Fragilaria. Over the period associated with glacial recession, organic carbon isotope analysis (δ13C) suggests a small but distinct increase in within-lake productivity, which increases in rate since the mid 1970s up to the present day, in line with a shift towards increased algal productivity (as highlighted by C/N ratios). However, the diatom and pollen records appear rather insensitive to changes in glacier recession since the late 19th century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号