首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The Hidaka metamorphic terrane in the Meguro-Shoya area, Hokkaido, Japan is divided into four progressive metamorphic zones: A—biotite zone; B—cordierite zone; C—cordierite–K-feldspar zone; and, D—sillimanite–K-feldspar zone of the andalusite–sillimanite facies series type of metamorphism. The metamorphic grade ranges from the higher temperature part of the greenschist facies (zone A) through the amphibolite facies (zones B and C) to the lower temperature part of the granulite facies (zone D). The zone boundaries intersect the bedding planes at high angles. P–T conditions estimated are 450–550°C and 2 kbar for zone A, 550–600°C and 2–2.5 kbar for zone B, 600–650°C and 2.5–3 kbar for zone C and 650–750°C and 3–4 kbar for zone D. The metapelites of zone D were partially melted.
At the later stage of the regional metamorphism which is early Oligocene to early Miocene in age, cordierite tonalite and biotite tonalite intrusives associated with segments of the highest grade rocks (zone D) were emplaced into the lower temperature part of the regional metamorphic rocks, giving rise to a contact metamorphic aureole. The thermally metamorphosed terrain (zone C') belongs to the amphibolite facies and its P–T conditions are estimated to have been 550–700°C and 2 kbar.
The P–T–t paths of the Hidaka metamorphism show a thickening–heating–uplifting process. The metamorphism is inferred to have taken place beneath an active island arc accompanied by partial melting of the crust.  相似文献   

2.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

3.
The compositions of biotite and muscovite were examined in terms of the paragenesis and the metamorphic grade in low- to medium-grade pelitic rocks of the Ryoke metamorphism in the Yanai district, southwest Japan. The biotite and muscovite that coexist with K-feldspar have a higher K component in an A'KF diagram than those in rocks lacking K-feldspar. This fact reflects an increase in the K2O content in muscovite, but in biotite it reflects an increase of not only the K2O content but also of the octahedral vacancy.
At higher metamorphic grade beyond the cordierite isograd, where cordierite coexists with neither chlorite nor K-feldspar, the biotite shows an increase in illite, K Aliv □xii−1 Si−1, and Tschermak components, Alvi Aliv R+−1 Si−1, where □xii and R+ denote the interlayer vacancy and (Fe+Mg+Mn), respectively. A reaction to define the cordierite isograd is proposed by treating this chemical change as being responsible for the first appearance of cordierite, i.e. K,Al-poor biotite+phengitic muscovite=K,Al-rich biotite+cordierite+quartz+water .By treating this as a key reaction in medium-grade metamorphism, a set of reaction in a progressive metamorphism is established for the Ryoke metamorphism, a typical low-pressure type metamorphism. Some textures in one of the high-grade areas, the K-feldspar-cordierite zone, suggest that a further two prograde reactions have taken place, i.e. andalusite+biotite+quartz=cordierite+K-feldspar+water
and   andalusite=sillimanite.quartz=cordierite+K-feldspar+water
This implies that this zone probably has a P–T  path involving isobaric heating.  相似文献   

4.
Two types of biotite isograd are defined in the low-grade metamorphism of the Wazuka area, a Ryoke metamorphic terrain in the Kii Peninsula, Japan. The first, BI1, is defined by the reaction of chlorite+K-feldspar= biotite+muscovite+quartz+H2O that took place in psammitic rocks, and the second, BI2, by the continuous reaction between muscovite, chlorite, biotite and quartz in pelitic rocks. The Fe/Mg ratios of the host rocks do not significantly affect the reactions. From the paragenesis of pelitic and psammitic metamorphic rocks, the following mineral zones were established for this low-pressure regional metamorphic terrain: chlorite, transitional, chlorite-biotite, biotite, and sillimanite. The celadonite content of muscovite solid solution in pelitic rocks decreases systematically with the grade of metamorphism from 38% in the chlorite zone to 11% in the biotite zone. Low pressure does not prohibit muscovite from showing the progressive change of composition, if only rocks with appropriate paragenesis are chosen. A qualitative phase diagram of the AKF system relevant to biotite formation suggests that the higher the pressure of metamorphism, the higher the celadonite content of muscovite at BI1, which is confirmed by comparing the muscovites from the Barrovian and Ryoke metamorphism.  相似文献   

5.
The Smartville Complex is a late Jurassic, rifted volcanic arc in the northern Sierra Nevada, California. Near Auburn, California, it consists of a lower volcanic unit, dominated by basaltic flows, and an upper volcanic unit of andesitic volcaniclastic rocks, both of which have been intruded by dykes and irregular bodies of diabase. These rocks contain relict igneous minerals, and the metamorphic minerals albite, chlorite, quartz, pumpellyite, prehnite, epidote, amphibole, titanite, garnet, biotite, K-feldspar, white mica, calcite, and sulphide and oxide minerals.
Prehnite–pumpellyite (PrP), prehnite–actinolite (PrA), and greenschist (GS) zones have been identified. The pumpellyite-out isograd separates the PrP and PrA zones, and the prehnite-out isograd separates the PrA and GS zones. The minerals Ab + Qtz + Mt + Tn are common to most assemblages in all three zones. The MgO/(MgO + FeO) ratio of the effective bulk composition has an important and systematic effect on the observed mineral assemblages in the PrP zone. Prehnite-bearing assemblages contain the additional minerals, Pmp + Amp + Ep + Chl in MgO-rich rocks, and either Pmp + Ep + Chl or Amp + Ep + Chl in less magnesian rocks. Subcalcic to calcic amphibole is common in the PrP zone. The mineral assemblage Prh + Act + Ep + Chl, without Pmp, characterizes the PrA zone, and the mineral assemblage Act + Ep + Chl, without Prh or Pmp, characterizes the GS zone. The disappearance of pumpellyite and prehnite occurred by continuous reactions.
The sequence of mineral assemblages was produced by burial metamorphism at P–T conditions of 300° 50°C at approximately 2.5 ± 0.5 kbar. During metamorphism, the composition of the fluid phase was nearly 100% H2O and the oxygen fugacity was between the hematite–magnetite and quartz–fayalite–magnetite buffers.  相似文献   

6.
The increase in metamorphic grade toward the Hackett River gneiss dome indicates that the structural dome is also a metamorphic culmination. In pelitic rocks east of the dome, the prograde sequence is chlorite, biotite, staurolite-cordierite, sillimanite. To the southwest the sequence is andalusite-staurolite-cordierite, sillimanite. In quartzofeldspathic gneisses which are closer to the dome than the sillimanite isograd, kyanite occurs as corroded relics, cross-cut by sillimanite and rimmed by cordierite and plagioclase.The pelites were metamorphosed under regional low-pressure conditions at the same time the quartzo-feldspathic rocks underwent higher-pressure metamorphism. A lateral variation in geothermal gradient during metamorphism is postulated to account for the change in facies-series. High heat flow beneath oceanic crust produced the low-pressure assemblages in the pelites; higher-pressure assemblages formed in a region of suppressed isotherms around a relatively cool, proto-continental trondhjemitic body. Low-pressure conditions were imposed on the kyanite-bearing gneisses during continuing metamorphism and diapiric uplift.Spatial association of late Archean kyanite-bearing rocks with early Archean sodic proto-cratons has also been noted in the Churchill and Superior Provinces of Canada as well as the Rhodesian Craton.  相似文献   

7.
The Omeo Metamorphic Complex forms the southern end of the Wagga Metamorphic Belt, which is the main locus of Palaeozoic low-pressure metamorphism in the Lachlan Fold Belt, south-eastern Australia. It comprises metamorphosed Ordovician quartz-rich turbidites originally derived from Precambrian cratonic rocks. Prograde regional metamorphism occurred in the early Silurian, very soon after sedimentation had ceased. The sequence of metamorphic zones, with increasing grade, is: chlorite, biotite, cordierite, andalusite–K-feldspar and sillimanite–K-feldspar. Migmatites occur in the sillimanite–K-feldspar zone, but large bodies of S-type granite were derived from rocks underlying the exposed Ordovician sequence. P and T estimates for the highest grade rocks are T = 700°C and P = 3.5 kbar, indicating a very high P–T gradient of 65°C/km.
The high heat flow during prograde metamorphism probably resulted from a combination of a thermal anomaly persisting from a pre-metamorphic back-arc basin environment, and intrusion of hot, mantle-derived magmas into the lower and middle crust.
Regional retrograde metamorphism coincided with a general reheating of the crust in the Siluro-Devonian, accompanied by intrusion of many I-type plutons and resetting of the K–Ar dates of some earlier plutons. The Omeo Metamorphic Complex was exposed to erosion at this time.  相似文献   

8.
相山地区变质基底新认识及其原岩归属的对比研究   总被引:5,自引:0,他引:5  
在相山北部首次发现十字石片岩及堇青石片岩。根据随变质作用增强而出现的新变质矿物,将相山变质岩基底划分为绢云母千枚岩带、黑云母片岩带、铁铝榴石片岩带和十字石片岩带。获得相山地区黑云母片岩-十字石片岩的Rb-Sr等时线年龄值为719Ma,斜长角闪片岩的Rb-Sr等时线年龄值为726.6Ma,表明相山基底变质岩属新元古期变质岩而不是加里东期变质岩。提出并采用微量元素地球化学比值聚类分析方法,确认相山地区变质岩原岩不属震旦系,而与华夏地块(古陆)的陈蔡群相当。  相似文献   

9.
The paragenetic relationships between sillimanite, andalusite, kyanite, chlorite, cordierite, biotite, garnet and staurolite in the Early Proterozoic Puolankajärvi Formation (PjF), together with mineral compositions, are used to construct a partial petrogenetic grid for metapelites with significant Mn content (MnO = 0.1–0.5%) by adding a six-phase invariant point over the garnet-absent invariant point for Mn-free AMF-phases.
The grid and textural relations of the PjF are used to construct part of the P–T –deformation path for the PjF. Relatively short deformation pulses and associated flow of oxidizing fluid along shear zones were responsible for the paragenetic and compositional changes during cooling and decompression at 600–500°C and 6.0–2.5 kbar. Oxidation led to decreased Fe2+ and further stressed the importance of Mn (increased Mn/divalent cations).
A tectonothermal evolution of the Kainuu Schist Belt is presented which includes crustal thinning and steepening of a previously established thermal gradient. This was followed by thrusting and folding of the isotherms into a thermal antiform on the western side of the belt.  相似文献   

10.
Contact metamorphism of greenschist facies Neoproterozoic turbidites by the Cretaceous Bugaboo Batholith in southeastern British Columbia has resulted in a well‐developed contact aureole. The aureole is about 1 km wide and can be divided into three main zones: (i) spotted phyllite zone, extending from the first appearance of spots of cordierite or andalusite to the last occurrence of primary chlorite; (ii) cordierite + andalusite + biotite zone, comprising hornfelses or schists with abundant porphyroblasts of cordierite and andalusite and, at higher grades, fibrolitic sillimanite; and (iii) K‐feldspar zone, characterized by hornfelses and schists that, in the inner part of this zone, are variably migmatitic. Four parts of the aureole were examined, three of which are characterized by schists, and one of which (Cobalt Lake area) is characterized by hornfelses and has exceptional exposure and comparatively unaltered rocks. Petrographic, modal, mineral‐compositional and whole rock‐compositional data were collected from the Cobalt Lake transect, allowing the prograde reaction sequence to be inferred. Notable features of the aureole at Cobalt Lake include: initial development of andalusite and plagioclase at the expense of paragonite‐rich white mica; a narrow interval across which cordierite, andalusite and biotite increase markedly at the expense of chlorite; gradual development of andalusite and biotite at the expense of cordierite and muscovite upgrade of chlorite consumption; and near‐simultaneous development of andalusite + K‐feldspar and sillimanite, the latter indicating a pressure of contact metamorphism of ~3 kbar. In other parts of the aureole, the development of sillimanite downgrade of the initial development of K‐feldspar suggests slightly higher pressures of contact metamorphism. Lack of correspondence between the observed sequence of reactions in the aureole and those predicted thermodynamically suggests that modifications to some of the thermodynamic data or activity–composition models may be required. Textural features in the aureole suggest the influence of kinetic factors on metamorphic recrystallization, including: (i) deformation‐catalysed reaction in the schists compared to the hornfelses, as indicated by different mineral‐growth sequences inferred from microstructures, and (ii) heating rate‐controlled recrystallization, as indicated by the decrease in grain size of hornfelses with increasing metamorphic grade.  相似文献   

11.
The conditions at which monazite and allanite were produced and destroyed during prograde metamorphism of pelitic rocks were determined in a Buchan and a Barrovian regional terrain and in a contact aureole, all from northern New England, USA. Pelites from the chlorite zone of each area contain monazite that has an inclusion-free core surrounded by a highly irregular, inclusion-rich rim. Textures and 208Pb/232Th dates of these monazites in the Buchan terrain, obtained by ion microprobe, suggest that they are composite grains with detrital cores and very low-grade metamorphic overgrowths. At exactly the biotite isograd in the regional terrains, composite monazite disappears from most rocks and is replaced by euhedral metamorphic allanite. At precisely the andalusite or kyanite isograd in all three areas, allanite, in turn, disappears from most rocks and is replaced by subhedral, chemically unzoned monazite neoblasts. Allanite failed to develop at the biotite isograd in pelites with lower than normal Ca and/or Al contents, and composite monazite survived at higher grades in these rocks with modified texture, chemical composition, and Th-Pb age. Pelites with elevated Ca and/or Al contents retained allanite in the andalusite or kyanite zone. The best estimate of the time of peak metamorphism at the andalusite or kyanite isograd is the mean Th-Pb age of metamorphic monazite neoblasts that have not been affected by retrograde metamorphism: 364.3Dž.5 Ma in the Buchan terrain, 352.9NJ.9 Ma in the Barrovian terrain, and 403.4LJ.9 Ma in the contact aureole. Some metamorphic monazites from the Buchan terrain have ages partially to completely reset during an episode of retrograde metamorphism at 343.1Nj.1 Ma. Interpretation of Th-Pb ages of individual composite monazite grains is complicated by the occurrence of subgrain domains of detrital material intergrown with domains of material formed or recrystallized during prograde and retrograde metamorphism.  相似文献   

12.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

13.
攀西中元古结晶片岩系遭受了前进区域变质作用。盐边和米易的砂屑岩和泥质岩分别可划出:绿泥石、黑云母、铁铝榴石、十字石和夕线石带以及绿泥石、黑云母-石榴子石、红柱石和夕线石带。在中、低级泥砂质岩石中,白云母的Na/(Na+K)比值随变质级增高。白云母、绿泥石和黑云母中的契尔马克替换范围大体上随变质级增高而降低。白云母和绿泥石之间契尔马克替换交换反应的分配系数,大致是白云母的绿鳞石含量的函数,并随变质温度升高而降低,在夕线石带,该分配系数变得很小。黑云母和白云母契尔马克替换交换反应的分配系数有类似的趋势。  相似文献   

14.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   

15.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

16.
Abstract Regionally distributed pelitic granulites in the Wilson Lake region contain the assemblage sapphirine + hypersthene + sillimanite + quartz. Geochronology and geobarometry suggest it developed in early Proterozoic rocks at temperatures approaching 900°C and pressures above 10 kbar. Vein-like metasomatized rocks around a suite of mafic to ultramafic intrusions, emplaced near the peak of metamorphism about 1700 Ma ago, contain sapphirine, but these assemblages developed at temperatures near 750°C and pressures of 4.5 kbar. Both types of assemblage occur as relics in amphibolite-grade (biotite–sillimanite) migmatites.
P–T determinations indicate rapid isothermal uplift of 20 km accompanied by mafic intrusion and hydration. The metamorphic history and tectonic setting suggest exposure of deep continental crust by thrusting during continental collision, followed by essentially isothermal decompression.  相似文献   

17.
A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite–kyanite zone, a muscovite–sillimanite zone, a K‐feldspar–sillimanite zone, and a K‐feldspar–cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid‐absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite–staurolite zone and the muscovite‐ and K‐feldspar–sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn‐anatectic shearing (melt‐enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb‐accommodated dislocation creep) to prism slip and high‐temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz–feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite–biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high‐grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low‐ to medium‐pressure/high‐temperature areas. At still higher metamorphic grades (K‐feldspar‐cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large‐scale strain partitioning and concentration of deformation within the higher‐temperature hanging wall during top‐to‐the‐S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high‐ to medium‐pressure/medium‐temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K‐feldspar‐cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone.  相似文献   

18.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

19.
The Higo metamorphic unit in west-central Kyushu island, southwest Japan is an imbricated crustal section in which a sequence of units with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The basal part of the metamorphic sequence representing an original depth of 23–24  km consists mainly of garnet–cordierite–biotite gneiss, garnet–orthopyroxene gneiss, orthopyroxene-bearing amphibolite and orthopyroxene-bearing S-type tonalite. These metamorphic rocks underwent high amphibolite-facies up to granulite facies metamorphism with peak P – T  conditions of 720  MPa, 870  °C. In addition sapphirine-bearing granulites and related high-temperature metamorphic rocks also occur as tectonic blocks in a metamorphosed peridotite intrusion. The sapphirine-bearing granulites and their related high-temperature metamorphic rocks can be subdivided into five types of mineral assemblages reflecting their bulk chemical compositions as follows: (1) sapphirine–corundum–spinel–cordierite (2) corundum–spinel–cordierite (3) garnet–corundum–spinel–cordierite (4) garnet–spinel–gedrite–corundum, and (5) orthopyroxene–spinel–gedrite. These metamorphic rocks are characterized by unusually high Al2O3 and low SiO2 contents, which could represent a restitic nature remaining after partial melting of pelitic granulite under the ultra high-temperature contact metamorphism at the peak metamorphic event of the Higo metamorphic unit. The metamorphic conditions are estimated to be about 800  MPa and above 950  °C which took place at about 250  Ma as a result of the thermal effect of the regional gabbroic rock intrusions.  相似文献   

20.
Aluminum silicates in the Mount Raleigh pendant, British Columbia   总被引:1,自引:0,他引:1  
In regionally metamorphosed pelites of the Mount Raleigh pendant, the fibrolite isograd occurs 5km downgrade from the sillimanite isograd. Fibrolite formed from the decomposition of biotite, a reaction that probably resulted from the late-stage influx of acidic volatiles. In contrast, sillimanite formed by the direct,'volume-for-volume'replacement of andalusite. Andalusite and sillimanite coexist in a 3 km-wide zone above the sillimanite isograd. Electron probe analyses of these phases reveal low minor element contents and yield K D [= X ] values close to unity; the low Fe2O3 contents are compatible with reducing conditions implied by the ubiquity of graphite. Because K D → 1.0, the zone of coexisting andalusite + sillimanite cannot be attributed to multivariancy resulting from partitioning of minor elements between these phases. Rather, the metastable persistence of andalusite into the sillimanite P-T stability field is suggested. The modal proportions of sillimanite versus andalusite imply that minimal (<5%) and alusitesillimanite reaction occurred in a zone 1.5km above the sillimanite isograd; in contrast, there was a marked increase in reaction progress immediately above this zone. With an estimated thermal gradient (in the plane of exposure) of approximately 20°C/km, the 1.5 km-wide zone of nil reaction suggests that the andalusite-sillimanite equilibrium boundary was overstepped by about 30 °C before significant reaction occurred. Inclusion-rich areas in andalusite provided favourable sites for sillimanite nucleation ; however, the growth of sillimanite may have been impeded by'pinning'of sillimanite grain boundaries by inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号