首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, using two methods: LCN'S (Lyapunov characteristic numbers) method and slice cutting method, we study numerically two mappings with odd dimension: $$T_1 :\left\{ {\begin{array}{*{20}c} {x_{n + 1} = x_n + z_n ,} \\ {y_{n + 1} = y_n + x_{n + 1} , (\bmod 2\pi )} \\ {z_{n + 1} = z_n + A\sin y_{n + 1} ,} \\ \end{array} } \right. T_2 :\left\{ {\begin{array}{*{20}c} {x_{n + 1} = x_n + y_n + B \sin z_n ,} \\ {y_{n + 1} = y_n + A \sin x_{n + 1} , (\bmod 2\pi ),} \\ {z_{n + 1} = z_n + B \sin y_{n + 1} ,} \\ \end{array} } \right.$$ whereA, B are parameters. For the mappingT 1 the whole region is stochastic; however, we find two-dimensional invariant manifolds for the mappingT 2.  相似文献   

2.
In 1982 and 1993, we carried out highly accurate photoelectric WBVR measurements for the close binary IT Cas. Based on these measurements and on the observations of other authors, we determined the apsidal motion $\left[ {\dot \omega _{obs} = {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} \mathord{\left/ {\vphantom {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ . This value is in agreement with the theoretically calculated apsidal motion for these stars $\left[ {\dot \omega _{th} = {{(14^\circ \pm 3^\circ )} \mathord{\left/ {\vphantom {{(14^\circ \pm 3^\circ )} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ .  相似文献   

3.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

4.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

5.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

6.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

7.
In this paper we discuss a perturbed extension of hyperbolic twist mappings to a 3-dimensional measure-preserving mapping $$\begin{array}{*{20}c} {T:\left\{ {\begin{array}{*{20}c} {x_{n + 1} = s(x_n \cos \varphi _n - y_n \sin \varphi _n ) + A\cos z_n ,} \\ {y_{n + 1} = s^{ - 1} (x_n \sin \varphi _n + y_n \cos \varphi _n ) + B\sin z_n ,} \\ {z_{n + 1} = z_n + C\cos (x_{n + 1} + y_{n + 1} ) + D,(\bmod 2\pi )} \\ \end{array} } \right.} \\ {\varphi _n = (x_n^2 + y_n^2 )^k } \\ \end{array}$$ wheres, k are parameters andA, B, C, D are perturbation parameters. We find that the ordered regions near the fixed point of the hyperbolic twist mapping is destroyed by the perturbed extension more easily than the ones distant from it. The size of the ordered region decreases with increasing perturbation parameters and is insensitive to the parameterD for the same parametersA, B, C.  相似文献   

8.
Dynamical systems with three degrees of freedom can be reduced to the study of a fourdimensional mapping. We consider here, as a model problem, the mapping given by the following equations: $$\left\{ \begin{gathered} x_1 = x_0 + a_1 {\text{ sin (}}x_0 {\text{ + }}y_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{)}} \hfill \\ y_1 = x_0 {\text{ + }}y_0 \hfill \\ z_1 = z_0 + a_2 {\text{ sin (}}z_0 {\text{ + }}t_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{) (mod 2}}\pi {\text{)}} \hfill \\ t_1 = z_0 {\text{ + }}t_0 \hfill \\ \end{gathered} \right.$$ We have found that as soon asb≠0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).  相似文献   

9.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

10.
A plane-wave analysis on a simplified scheme based on the Boussinesq approximation and shallow convection is used to establish the necessary conditions for stability of a differentiallyrotating, compressible flow between two coaxial cylinders subject to non-axisymmetric perturbations. To test the adequateness of this simplification, the sufficient conditions for stability are again established which agree with those obtained by a normal-mode analysis on an exact scheme in an earlier paper by the author. This model is applicable to stellar models with rotation Ω=Ω(ω), where ω is the radial distance from the axis of rotation (thez-axis). A necessary condition for stability, in the non-dissipative case, is found to be that $$\frac{1}{\varrho }G_\varpi S_\varpi + \frac{{k_z^2 }}{M}\Phi - \frac{1}{4}\frac{{m^2 }}{M}\left( {D\Omega } \right)^2 \geqslant 0$$ everywhere. Here,m andk z are the wave numbers in the ø- andz-direction, \(M \equiv k_z^2 + m^2 /\varpi ^2 ,D \equiv d/d\varpi ,G_\varpi \equiv - \varrho ^{ - 1} Dp,\varrho \) the density,p the pressure,S ω and Φ the Schwarzschild and the Rayleigh discriminants defined as \(S_\varpi \equiv \left( {\gamma p/\varrho } \right)^{ - 2} Dp - D\varrho and \Phi \equiv ^{ - 3} d\left( {\varpi ^4 \Omega ^2 } \right)/d\varpi \) respectively, γ the ratio of specific heats. This condition is also a sufficient one. Some conjectures regarding the stabilizing influence of uniform rotation and the destabilizing influence of differential rotation are also verified. The most striking instability mechanism introduced by shear forces and by radiative dissipation is the excitation of the stable motion of small oscillations into that of oscillations with growing amplitude, i. e., overstability. In the case of radiative dissipation and axisymmetric perturbations, the Goldreich-Schubert criterion is only necessary but not sufficient for stability. Instability sets in as soon as the Schwarzschild criterion is violated. When the perturbations are non-axisymmetric, instability always sets in as overstability as long as rotation is differential. This may explain the convective turbulence in the upper atmosphere where the radiation is active.  相似文献   

11.
In this work we consider the problem of translational-rotational motion of three solid bodies, for which the elementary particles attract each other according to different Weber's laws for each pair of bodies. This problem represents a special case of the generalized problem of three solids considered in a previous work, (Dubochin, 1974) and it gives an example of the verification of the existence conditions for the Lagrangian solutions. In these solutions, the centers of mass always for m an equilateral triangle. Each body has axial symmetry with the plane of symmetry perpendicular to the axis of symmetry rotates uniformly around this axis, which at any instant stays perpendicular to the plane of the triangle formed by the centers of mass. According to Weber's law (Tisserand, 1896) the elementary particles of two bodiesT i andT j (i, j=0, 1, 2) are attracted by forces which are proportional to the function $$F_{ij} (W) = \frac{{f_{ij} }}{{\Delta _{ij^2 } }}\left[ {1 - a_{ij} \dot \Delta _{ij^2 } + 2a_{ij} \Delta _{ij} \ddot \Delta _{ij} } \right]$$ wheref ij anda ij (in generalf ji f ij anda ji a ij ) are functions of the timet, and where the real quantities Δij are the mutual distances between the particles of the bodiesT i andT j , and where \(\dot \Delta _{ij} \) and \(\ddot \Delta _{ij} \) are their derivatives with respect to the time. The analysis of the general conditions for the Lagrangian solutions gives the following results for the case of Weber's laws.
  1. Only the invariant Lagrangian solutions, (the traingle of the centres of mass does not change in time) are possible in this problem.
  2. Besides the conditions (NL) obtained in the case of the Newton-Coulomb law, (all thea ij are zero), the complementary conditions (WL) must be satisfied.
In particular, if all the bodies are spheres or homogeneous ellipsoids, they must necessarily have the same dimensions, but they can have different masses.  相似文献   

12.
The publication of the solution of the Ideal Resonance Problem (Garfinkelet al., 1971) has opened the way for a complete first-orderglobal theory of the motion of an artificial satellite, valid for all inclinations. Previous attempts at such a theory have been only partially successful. With the potential function restricted to $$V = - 1/r + J_2 P_2 (\sin \theta )/r^3 + J_4 P_4 (\sin \theta )/r^5 ,$$ the paper constructs aglobal solution of the first order in √J 2 for the Delaunay variablesG, g, h, l and for the coordinatesr, θ, and ?. As a check, it is shown that this solution includes asymptotically theclassical limit with the critical divisor 5 cos2 i?1. The solution is subject to thenormality condition $$eG^2 /(1 + \frac{{45}}{4}e^2 ) \geqslant O\left[ {\left| {\frac{1}{5}(J_2 + J_4 /J_2 )} \right|^{1/4} } \right],$$ which bounds the eccentricitye away from zero in deep resonance. A historical section orients this work with respect to the contributions of Hori (1960), Izsak (1962), and Jupp (1968).  相似文献   

13.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

14.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

15.
It is suggested that gravitationally bound systems in the Universe can be characterized by a set of actions ?(s). The actions $$\hbar ^{\left( s \right)} = \left( {{\hbar \mathord{\left/ {\vphantom {\hbar {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right. \kern-\nulldelimiterspace} {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right)^{s/6} \left( {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}} \right)$$ ,derived from general theoretical consideration, are only determined by the fundamental physical constants (Planck's action ?, the velocity of lightC, gravitational constantG, and Hubble's constantH 0) and a scale parameters. It is shown thats=1, 2, and 3 correspond, respectively, to the scales of galaxies, stars, and larger asteroids. The spectra of the characteristic angular momenta and masses for gravitationally bound systems in the Universe are estimated byJ (s) andM (s) =(? (s) /G)1/2. Taken together, an angular momentum-mass relation is obtained,J (s)=A(M(s))2, where \(A = G/C\alpha ,{\text{ }}\alpha \simeq \tfrac{{\text{1}}}{{{\text{137}}}}\) , for the astronomical systems observed on every scale. ThisJ-M relation is consistent with Brosche's empirical relation (Brosche, 1974).  相似文献   

16.
We consider the Alfvén-Arrhenius fall-down mechanism and describe an approximate model for the infall, capture and distribution of dust particles on a given magnetic field line and their possible neutralization at the ‘2’/3 points, the points at which the field aligned compnents of the gravitational and centrifugal forces are equal and opposite. We find that a small fraction (<10%) of an incoming particle distribution will actually contribute to the above ‘2’/3 fall-down process. We also show that if at the 2/3 points, the ratio of dust to plasma density is $$\frac{{n_D \left( {\tfrac{2}{3}} \right)}}{{n_p \left( {\tfrac{2}{3}} \right)}} > \frac{{10^{ - 3} }}{{r_{g_\mu } T_{eV} }}$$ . (r gμ=radius of a grain in microns,T=plasma temperature in eV), then the dust particles will lose their charge, decouple from the field line and follow Keplerian orbits in accordance with the Alfvén-Arrhenius mechanism. We then determine the limits on the plasma parameters in order that rotation of a quasi-neutral plasma in thermal equilibrium be possible in the gravitational and dipole field of a rotating central body. The constraints imposed by the above conditions are rather weak, and the plasma parameters can have a wide range of values. For a plasma corotating with an angular velocity Ω~10?4s?1, we show that the plasma temperature and density must satisfy $$10^{ - 1}<< T_{(eV)}<< 10^2 ,10T_{eV}^2<< n^p \left( {cm^3 } \right)<< 10^6 $$ .  相似文献   

17.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

18.
In a static gravitational field the paths of light are curved, as noticed by H. Weyl. This property can bea priori stated for aV 3 Riemannian manifold: through any two points ofV 3 it is possible to draw two families of curves, the straight lines of Euclidean geometry and the photon trajectoriesz. We can perform a fibration of the Galilean space-time in an original way, by taking thez-trajectories of the photons as the base, the isochronic surfaces as fibres, and ‘the equal length time on az trajectory to reach a given point’ as the equivalence relation. The straight lines of Euclidean geometry can then carry the classical mechanics timet, and thez trajectories can carry the optics time t. These times are related by dt=F(x,t) dt. If we class the Universe as a pseudo-Riemannian manifold of normal hyperbolic typeC , the time t determined above can be taken as the time coordinate inV 4. Under these conditions we have \(d\overline s ^2 \) =F 2 \(d\overline s ^2 \) , where \(d\overline s ^2 \) is the metric of the Riemannian manifold, conforming to the metric ds 2 and allowing t as the cosmic time. We can then use the results previously achieved by the author (Peton, 1979) and write: 1 +Z G =F(A s,t s,)/F(Aos,t o) wherez G denotes the shift of the spectral lines due to the metric. In the case of relative motion betweenO andS, we have $${\text{1 + z' = (1 + }}z_{\text{G}} {\text{)(1 + }}\beta _{\text{r}} {\text{)(1 }} - {\text{ }}\beta ^2 {\text{)}}^{ - 1/2} $$ The Doppler-Fizeau effect therefore appears as a result of the application of the Fermat principle.  相似文献   

19.
If \(T = \sum\nolimits_{i = 1}^\infty {\varepsilon ^i } T_i\) and \(W = \sum\nolimits_{n = 1}^\infty {n\varepsilon ^{n - 1} } W^{\left( n \right)}\) are respectively the generators of Giorgilli-Galgani's and Deprit's transformations, we show that the change of variables generated byT is the inverse of the one generated byW, ifT i =W (i) for anyi. The method used is to show that the recurrence which defines the first algorithm can also be obtained with the second one.  相似文献   

20.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号