首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
PARSONS  IAN 《Journal of Petrology》1979,20(4):653-694
The Klokken stock has an outer sheath of vertically banded alkaligabbro which passes through syenogabbros into unlaminated syenitessurrounding a central layered syenite core. The layered seriescomprises sheets of granular syenite interleaved with drusylaminated syenite which shows repeated inversely graded minerallayering in which normal leucosyenite becomes progressivelymore hedenbergite-rich upwards. Tops to layers are nearly feldspar-free,fayalite—magnetite horizons. Model cumulate textures areexhibited, and cross-bedding and normally graded channel structuresare encountered. Granular layers often rest on ultramafic layersand load structures occur at the junctions. The series is cutby a sheet of biotite-syenodiorite and finally by quartzsyeniteaplites. Plagioclase (An57 in gabbros) is progressively mantled by ternaryalkali feldspar and is absent only in the layered series inwhich alkali feldspars cluster around Ab65 Or35. Pyroxene showsunbroken evolution with respect to Fe/Fe + Mg, from augite toferrohedenbergite and sodie hedenbergite, with acmite in aplites,but Al and Ti decrease suddenly between syenogabbro and unlaminatedsyenite stages. Olivines show parallel evolution but there isa jump in Fe: Mg between gabbros and unlaminated syenites fromFo52 to Fo34, with subsequent steady evolution to Fo3Te5Fa92in laminated syenites. Biotites show steady increase in Fe/Fe+ Mg throughout the syenites, approaching pure annite, but thegabbro-syenogabbro series show a reversal, interpreted as indicatingcrystallization under conditions of increasing fo2. Ilmenomagnetitesshow systematically varying minor element ratios, with a suddendrop in MgAl2O4 content between gabbros and syenites. Amphiboles(ferroedenites and sodic hastingsites) appear only in the mostfractionated syenites in the layered series. The Klokken chamber was lined by gabbro with only limited insitu fractionation to syenogabbro. The termination of gabbrocrystallization was marked by ingress of water into the conduit,perhaps causing the liquid to embark on its fractionation trendtowards oversaturated residua. The mineralogical breaks areconsistent with a drop in temperature, and increase in aSIO2at this point. The chamber was subsequently filled by a drytrachytic liquid which fractionated in situ, initially by congelationagainst the walls as unlaminated syenite. The layered seriesdeveloped within this chamber. The granular syenites show invertedcryptic and phase-layering (downward appearance of amphibole),and downward increase in grain size. They are sheets stopedoff the roof of the intrusion, representing chilled equivsalentsof the fractionating trachytic liquid of which the laminatedsyenites are the bottom accumulated products. In the inverselygraded layers the cumulus phases have slightly more advancedcompositions than the same phases in either normal rock or whenpresent as an intercumulus phase in adjacent parts of layers.The layering is attributed to crystallization at varying degreesof undercooling in a magma in which all phases exhibit a narrowcrystallization interval and which was subject to rhythmic P-build-upand sudden release. Crystal accumulation took place under nearstagnant to rhythmie P-build-up and sudden release. Crystalaccumulation took place under near stagnant conditions in athin chamber immediately beneath the roof of the intrusion.  相似文献   

2.
Abstract. Early Cretaceous granitic intrusions are associated with Au‐quartz veins and Cu‐Fe skarns in the the Kitakami Mountains, which are underlain by the late Paleozoic of continental margin‐type sedimentary rocks and Mesozoic accretionary complexes. The plutonic rocks are divided into potassic, high‐Sr/Y calc‐alkaline and low‐Sr/Y calc‐alkaline series. All the metallic mineral deposits are spatially associated with small stocks and plugs; they show no consistent association with the larger plutonic bodies. The plutonic rocks generally belong to the magnetite series but less oxidized in the southwestern part of the Kitakami Mountains where Au‐quartz veins occur. The gold deposits are classified into high and low sulfide types. The high sulfide type contains a high volume of sulfide minerals mostly of chalcopyrite, arsenopyrite and pyrrhotite with low bulk Au/Ag ratios. This type occurs almost exclusively in and surrounding the Orikabe pluton, including two most important gold deposits (Oya and Kohoku) of the Kitakami Mountains. The pluton is composed of potassic gabbroids, potassic granitoids of the shoshonite ‐ high‐K calc‐alkaline series (Orikabe type), and less potassic Sasamori‐type granodiorite. All these rocks belong to a moderately oxidized magnetite series. The Orikabe pluton has one of the lowest initial Sr ratio (0.70392) in the Kitakami Mountains, and the Au‐Cu‐dominant ore components of the high sulfide type Au deposits are considered magmatic in origin carried by the juvenile magmas from the upper mantle. The low sulfide type is generally plain quartz vein with a low volume of sulfides and a high bulk Au/Ag ratio. The associated minerals are often scheelite and/or arsenopyrite and pyrrhotite. The ore deposits include historically famed Au‐quartz veins at Shishiori and Ogayu. They are widespread in the southwestern Kitakami Mountains and may be later than the high sulfide type in age, and are hosted most commonly in the sedimentary rocks, which surround small weakly oxidized magnetite‐series plutons of low to intermediate Sr/Y series. These less differentiated intrusions typically include quartz dior‐ite and granodiorite. Some ore components of this type may have derived from the host sedimentary rocks. Among other mineral deposit types in the region, the largest ore deposit is Kamaishi Cu‐Fe skarn (magnetite ores of 58 MT, Fe 50–64 %; Cu 143 KT). It is related to the high‐Sr/Y series Ganidake granodiorite stock, which is a strongly oxidized magnetite‐series body. In contrast, the second largest deposit in the mountains, Akagane deposit, is a similar‐type skarn but associated with an intrusion classified as less oxidized, ilmenite to intermediate series, and that is intermediate in Sr/Y of calc‐alkaline series granodiorite. Degree of magmatic differentiation appears to be not critical factor in the formation of Au‐quartz vein and Cu‐Fe skarn deposits in the region, but is definitely significant for controlling the distribution of the Mo‐mineralization to the east.  相似文献   

3.
The volcanic activity of Mts Bambouto and Oku (Western Highlands)and of the Ngaoundere Plateau, in the continental sector ofthe Cameroon Volcanic Line, Equatorial West Africa, ranges inage from Oligocene to Recent. It is characterized by basanitic,alkali basaltic and transitional basaltic series. Mineral chemistry,major and trace element bulk-rock compositions, and geochemicalmodelling suggest that the magmatic series evolved mainly atlow pressure (2–4 kbar) through fractional crystallizationof clinopyroxene and olivine ± magnetite, at moderatelyhydrated (H2O = 0·5–1 wt %) and QFM (quartz–fayalite–magnetite)to QFM + 1 fO2 conditions. Basalts from Ngaoundere (Mioceneto Quaternary) and from the early activity (31–14 Ma)of the Western Highlands have incompatible trace element andSr–Nd isotopic compositions similar to those of oceanicCameroon Line basalts, pointing to a similar asthenosphericmantle source. By contrast, the late (15–4 Ma) WesternHighlands basanites and alkali basalts have anomalously highconcentrations of Sr, Ba and P, and low concentrations of Zr,which are exclusive features of continental Cameroon basalts.The genesis of these latter magmas is consistent with derivationfrom an incompatible element enriched, amphibole-bearing lithosphericmantle source. Western Highlands basalts show a continuous spectrumfrom high to low Sr–Ba–P compositions, and may resultfrom variable amounts of mixing between melts derived from ananhydrous lherzolite source (asthenospheric component) and meltsfrom an amphibole-bearing peridotite source (lithospheric HSrcomponent). New 40Ar/39Ar ages for Mts Oku and Bambouto basalts,combined with previous 40Ar/39Ar and K/Ar ages of basaltic andsilicic volcanics, and with volcanic stratigraphy, suggest aNE–SW younging of the peak magmatic activity in the WesternHighlands. This SW younging trend, extending from the Oligocenevolcanism in northern Cameroon (e.g. Mt Oku) to the still activeMt Cameroon, suggests that the African plate is moving abovea deep-seated mantle thermal anomaly. However, the age and locationof the Ngaoundere volcanism does not conform to the NE–SWyounging trend, implying that the continental sector of theCameroon Volcanic Line cannot be easily interpreted as the surfaceexpression of a single hotspot system. KEY WORDS: Cameroon Line basalts;40Ar/39Ar geochronology; lithospheric and asthenospheric mantle source; hotspot  相似文献   

4.
Metamorphism of the Crystalline Basement of Central Chile   总被引:1,自引:2,他引:1  
The metamorphic basement of the Cordillera de la Costa, in CentralChile, consists mainly of slate, meta-sandstone, phyllite, andmica schist but contains small quantities of greenschist. Thegreater part of the basement is comprised in the Curepto series,and is characterized by dynamo-metamorphism whose intensityincreases westward. East of this is the smaller Nirivilo series,characterized by contact metamorphism whose intensity increaseseastward toward a granodiorite batholith. At the northern endof the metamorphic belt lies the Pichilemu series, in whichthe metamorphism is dynamo-thermal and increases in intensityto the east. The rocks in the first two areas are divisibleinto zones that trend north-north-east, essentially parallelto the margin of the batholith and to the Pacific coast; butin the Pichilemu area the zoning trends north-west. In the Cureptoseries three zones were distinguished; these are, in order fromeast to west: (1) a muscovite-chlorite(-albite) slate zone,(2) a muscovite-biotite(-albite) phyllite zone, and (3) a muscovite-chlorite-albite(±garnet) schist zone. The rocks in all three zones belongto the greenschist facies; the chlorite in the third zone isbelieved to be a product of H metasomatism. In the much narrowerNirivilo area no zones were mapped, but the following eastwardsuccession of critical assemblages was recognized: (1) muscovite-biotite-chlorite-albite;(2) muscovite-biotite-chlorite-andalusite-albite; (3) biotite-muscovite-andalusite-oligoclase;(4) biotite(± muscovite)-andalusite-sillimanite (or cordierite).The muscovite in the rocks that have undergone highgrade metamorphismis largely of metasomatic origin. Part of the sillimanite hasbeen formed at the expense of biotite and andalusite. In mostof the Nirivilo area the most strongly metamorphosed rocks areof the hornblende-hornfels facies, but small parts of that areamay contain rocks of the pyroxene-hornfels facies. The Pichilemuarea comprises the following zones and subzones: (1) a biotitezone, which includes (a) a muscovite-chlorite-biotite-albitesubzone and (b) a muscovite-biotite-albite subzone; (2) a garnet-oligoclasezone; (3) a staurolite-andalusite zone; (4) a muscovite-sillimanitezone; and (5) a sillimanite-orthoclase zone which includes (a)a sillimanite-orthoclase subzone and (b) a sillimanite-orthoclase-cordierite-almandinesubzone. Some thermal metamorphism is superimposed on the regionalmetamorphism. The facies grade from the greenschist to the granuliteor intermediate between the granulite and the amphibolite facies.The three series represent different pressure conditions: theNirivilo series corresponds to a low-pressure (contact) type,Pichilemu represents a low-pressure intermediate, dynamo-thermaltype, and Curepto is a dynamothermal, high-pressure intermediatetype series. The Curepto area was affected first, the Pichilemuarea next, and the Nirivilo area last. The metamorphism in allthree series is thought to have occurred during a single tectoniccycle within Late Paleozoic time, but it was probably interruptedby periods of erosional unloading. The width of the contactaureole is thought to have been determined by the irregularexpansion of the batholith. The analogy between the metamorphicseries of the Cordillera de la Costa and Miyashiro's circum-Pacificpaired belts is briefly discussed.  相似文献   

5.
《Gondwana Research》2002,5(3):581-589
Magnetic susceptibilities were measured on a representative collection of Archaean granitoids of the Barberton region using a portable KT5 magnetic susceptibility meter. The studied granitoids comprise, (1) syn-tectonic tonalite-trondhjemite-granodiorite (TTG) granitoids (132 samples), (2) late-tectonic calc-alkaline granitoids (402 samples) and (3) post-tectonic low-Ca and high-Ca granitoids (12 samples). Most of the early-stage syn-tectonic granitoids (∼3450 Ma) have low magnetic susceptibilities, less than 3 × 10−3 SI units, and correspond to ilmenite-series granitoids. The late-stage Kaap Valley tonalite pluton (∼3230 Ma) contains sporadically distributed higher magnetic susceptibility values (greater than 3 × 10−3 SI units), which are less than one-third in magnetic susceptibility of typical magnetite-series TTG of the Japanese Island Arc and thus strictly belong to an intermediate series. The Barberton TTG suite is essentially derived from reduced amphibolitic lower crust that reflects the anoxic nature of the Earth surface during the Archaean Eon. The more oxidized nature of the Kaap Valley tonalite may be generated in an oxidized lower crust by fluids squeezed out of the subducting plate.Late-tectonic granodiorite - adamellite batholithic complexes (∼3105 Ma) belong mostly to the magnetite series, and seem to suggest that relatively oxidized continental crust, reflecting oxic atmosphere and subduction mechanism operating, had evolved it by this time. Post-tectonic granitic plutons formed largely between circa 2900 Ma and 2700 Ma can be subdivided into low-Ca ilmenite series and high-Ca magnetite series.  相似文献   

6.
The Fish Canyon Tuff, Colorado, forms one of the largest (3000km3 known silicic eruptions in Earth history. The tuff is ahomogeneous quartz latite consisting of 40% phenocrysts (plagioclase,sanidine, biotite, hornblende, quartz, magnetite, apatite, sphene,and ilmenite) in equilibrium with a highly evolved rhyoliticmelt now represented by the matrix glass. Melt inclusions trappedin hornblende and quartz phenocrysts are identical to the newlyanalyzed matrix glass composition indicating that hornblendeand quartz crystallized from a highly evolved magma that subsequentlyexperienced little change. This study presents experimentalphase equilibrium data which are used to deduce the conditions(P, T, fO2, fH2O, etc.) in the Fish Canyon magma chamber priorto eruption. These new data indicate that sanidine and quartzare not liquidus phases until 780?C temperatures are achieved,consistent with Fe-Ti oxide geothermometry which implies thatthe magmatic temperature prior to eruption was 760?30?C. NaturalFe-Ti oxide pairs also suggest that log fO2 was -12.4 (intermediatebetween the Ni-NiO and MnO-Mn3O4 oxygen buffers) in the magmachamber. This fO2.102 is supported by the experimentally determinedvariations in hornblende and melt Mg-numbers as functions offO2 A new geobarometer based on the aluminum content of hornblendesin equilibrium with the magmatic assemblage hornblende, biotite,plagioclase, quartz, sanidine, sphene, ilmenite or magnetite,and melt is calibrated experimentally, and yields pressuresaccurate to ?0.5 kb. Total pressure in the Fish Canyon magmachamber is inferred to have been 2.4 kb (equivalent to a depthof 7.9 km) based on the Al-content of natural Fish Canyon hornblendesand this new calibration. This depth is much shallower thanhas been proposed previously for the Fish Canyon Tuff. Variationsin experimental glass (melt) composition indicate that the magmawas water-undersaturated prior to eruption. XH2O in the fluidphase that may have coexisted with the Fish Canyon magma isestimated to have been 0.5 by comparing the An-content of naturalplagioclases to experimental plagioclases synthesized at differentXH2O and Ptotals. This ratio corresponds to about 5 wt.% waterin the melt at depth. The matrix glass chemistry is reproducedexperimentally under these conditions: 760?C, 2.4 kb, XH2O=0.5,and log fo2=NNO+2 log units. The fugacity of SO2 (91 b) is calculatedfrom the coexistence of pyrrhotite and magnetite. Maximum CO2fugacity (2520 b) is inferred assuming the magma was volatilesaturated at 2.4 kb.  相似文献   

7.
The Giles Complex, central Australia, consists of a series oflarge layered gabbroic/ultramafic intrusions emplaced in acidicand intermediate granulites of the Middle Proterozoic Musgraveblock. Lithologies range from well-layered dunite, wehrlite,and pyroxenite in the lower primitive series, to massive olivinegabbro, gabbronorite, and anorthosite in the main units, andferrodiorites, vanadife-rous magnetite layers, and granophyresin the upper, most fractionated parts. Unlike many layered intrusions,the Giles Complex is tectonically dismembered to an extent thata reconstruction of the original morphology is difficult. The Complex is believed to be a type example for medium- tohigh-pressure differentiation. (1) Chilled margin samples (wherepreserved) are orthopyroxene-phyric, and liquidus olivine isreplaced by liquidus orthopyroxene at an mg-number of 0.77,suggesting a pressure-related expansion of the orthopyroxenestability field (Goode & Moore, 1975). (2) Tschermaks substitutioninto pyroxene and plagioclase-orthoclase solid solution areextensive, indicating unusually high crystallization temperaturerelated to high pressure; antiperthites in the Giles Complexare amongst the most calcic reported for terrestrial rocks.(3) The lower primitive cumulate units of the Complex are coroniticand feature a variety of subsolidus high-pressure reaction textures;olivine and cumulus chromite have reacted with calcic plagioclaseto orthopyroxene-clinopyroxene-spinel, olivine-spinel, and clinopyroxene-spinelsymplectites. The principal reaction mechanism for the symplectites was continuousmass transfer of alumina from plagioclase toward spinel, asthe Complex passed from the olivine-plagioclase stability fieldinto the pyroxene-spinel field during cooling. Geothermometersapplicable to the cumulates record a wide range of equilibrationtemperatures from late-magmatic to granulite-metamorphic conditions.FeMg1 exchange gives closure temperatures around 600–700?C,whereas Al2Mg1Si1 net-transfer equilibria have preserved highertemperatures around 750–900 ?C. Defocused beam bulk analysesof exsolved cumulus clinopyroxenes and intercumulus plagioclasesrecover magmatic compositions; i. e., two-pyroxene solvus CaMg-1temperatures plot around 1120?50?C, whereas two-feldspar thermometersgive 1200?C. Pressures are calculated from thermochemical data with the heterogeneousequilibria 2 fo + an = en + di + sp, fo + an = di + Mg-Ts, andfo + an = en + Ca-Ts, after correcting spinel activities forselective retrograde FeMg-1 exchange during cooling. These equilibria,combined with orthopyroxene-spinel Al2Mg-1Si-1 temperaturesfor metamorphic assemblages and two-pyroxene temperatures forcumulus phases define a medium-pressure cooling path extendingfrom 1150 ?C (at 6?5 kb) to 750 ?C (at 6?2 kb). The resultssuggest an isobaric cooling path for the Giles Complex, withno evidence for a post-intrusive metamorphic overprint. Themagmas intruded at lower to middle crustal levels after thepervasive deformation in the Musgrave block, and probably afterthe peak metamorphic event.  相似文献   

8.
库姆塔格钼矿位于新疆东天山星星峡隆起区哈密库姆塔格沙垄的东侧,是一个产于基性岩中的辉钼矿矿床。区内目前已发现7条矿化体,这些矿化体围绕辉长岩与角岩/矽卡岩的接触带呈向北西突出的弧形展布。矿体内主要金属矿物有辉钼矿、黄铜矿、黄铁矿、磁铁矿等,辉钼矿、黄铜矿呈稀疏浸染状分布于辉长岩中。对辉长岩中的辉钼矿进行Re-Os同位素年龄测定,获得矿床形成的等时线年龄为(318±27)Ma,加权平均年龄为(319.1±4.5)Ma,成矿时代为早—中石炭世。这一测年结果与区域内的部分花岗岩的侵入时间一致,表明该矿床的形成与区内的酸性岩浆活动存在一定的联系,因此区内酸性岩体与中基性岩体的接触部位是寻找这类新型矿床的有利地段。库姆塔格钼矿的发现不仅打破了以往在酸性岩体内部和矽卡岩带内寻找钼矿床的勘探模式,同时也为在东天山地区内寻找铜钼多金属矿床开拓了思路。  相似文献   

9.
The Influence of Viscosity on Fountains in Magma Chambers   总被引:5,自引:4,他引:5  
Geological observations suggest that basaltic magmas mix readilybut that rhyolites and basalts can erupt through the same volcanicvent without mixing. The implication is that viscosity may havean important influence on the mixing of magmas. This paper examines the influence of viscosity on magma mixingwhen a magma of low viscosity is injected as a turbulent fountaininto a chamber containing a magma of higher viscosity. Threeseries of experiments were carried out. In the first, the lowviscosity fluid was injected into the tank at a Reynolds number(Re1) of about 1000 to ensure that flow within the fountainwas fully turbulent. Both fluids were maintained at the sametemperature and the viscosity of the host fluid was varied systematically.If the viscosities of the two fluids are similar, turbulencein the fountain leads to extensive mixing and to formation ofa density-stratified layer which collects at the bottom of thetank. However, if the viscosity ratio of the fluids used isgreater than 400, no detectable mixing occurs. Motion withinthe fountain is again fully turbulent but the high momentumof the input fluid is not transmitted to the more viscous hostfluid. Experiments carried out at intermediate viscosity ratiosresulted in intermediate amounts of mixing. Theoretical considerations suggest that the criterion for mixingin turbulent fountains, when a fluid of low viscosity v1 isinjected into a fluid of much higher viscosity v2 is wd>kv2 where w is the flow velocity through an input pipe of diameterd and k is a constant. This relationship is believed to be ageneral one, applying equally to jets and plumes, although thevalues of k may vary with the nature of the flow. The secondseries of experiments was designed to test this relationshipand determine values of k for fountains. The results show that,if wd/v2 > 70, the inflowing fluid mixes with the host fluidas there was no viscosity difference between them. However,if wd/v2 < 7, little or no mixing occurs even if motion withinthe fountain is fully turbulent. In the third series of experiments the temperature of the inputfluid was 70?C above that of the host fluid. This led to heatingofa thin boundary layer of the host fluid, lowering the viscosityof the host fluid adjacent to the fountain and thus allowingadditional mixing between the fluids. This effect was most obviousin the experiment with the highest viscosity ratio (1229) wherea small amount of mixing was detected, compared with no mixingin the equivalent experiment in the first series. The criterion for mixing, wd> kv2 can be applied to naturalmagmas. The results show that if a primitive basaltic magmais injected, as a turbulent fountain or plume, into a chambercontaining fractionated basaltic magma, the two magmas willmix readily. However, if basaltic magma is injected into a chambercontaining granitic melt, little or no mixing occurs.  相似文献   

10.
The redox state of sillimanite zone (650–700°C, 5–6kbar) metasediments of the Barrovian type area, Scotland, wasinvestigated using estimates of metamorphic oxygen fugacity(fO2), sulfur fugacity (fS2), and fluid chemistry based on newdeterminations of mineral and rock compositions from 33 samples.A total of 94% of the samples lack graphite, contain both ilmenite–hematitesolid solutions (RHOMOX) and magnetite, and had metamorphicfO2 about 2 log10 units above the quartz–fayalite–magnetite(QFM) buffer. The regional variation in metamorphic fO2 forthese rocks was minimal, about ±0·3 log10 units,reflecting either a protolith that was homogeneous with respectto redox state, or an initially variable protolith whose redoxstate was homogenized by metamorphic fluid–rock interaction.RHOMOX inclusions in garnet porphyroblasts that become richerin ilmenite from the interior to the edge of the host porphyroblastsuggest that at least some syn-metamorphic reduction of rockoccurred. Significant variations in bulk-rock oxidation ratio(OR) that are probably inherited from sedimentary protolithsare found from one layer to the next; OR ranges mostly between  相似文献   

11.
Late Archaean to Palaeoproterozoic felsic magmatic lithounits exposed in the central part of the Bundelkhand massif have been mapped and their redox series (magnetite vs ilmenite series) evaluated based on magnetic susceptibility (MS) data. The central part of Bundelkhand massif comprises of multiple felsic magmatic pulses (∼2600–2200 Ma), commonly represented by coarse grained granite (CGG-grey granite, CPG-pink granite), medium grained pink granite (MPG), fine grained pink granite (FPG), grey and pink rhyolites and granite porphyry (GP). However, the pink colour of these felsic rocks is the result of hydrothermal fluid-flushing leading to potassic alteration of grey granites. MS values of CGG vary from 0.058 to 14.75×10−3 SI with an average of 6.35×10−3 SI, which mostly represent oxidized type, magnetite series (73%) granites involving infracrustal (igneous) source materials. CPG (av. MS=3.95×10−3 SI) is indeed a pink variety of CGG, the original oxidizing nature of which must have been similar to the bulk of CGG, but has been moderately to strongly reduced because of distinctly more porphyritic nature together with partial assimilation of metapelitic (supracrustal) materials, surmicaceous enclaves, carbonaceous material included in the source materials, and to some extent, induced by hydrothermal and later deformational processes. MPG (av. MS= 1.15×10−3 SI) as lensoidal stock-like bodies intrudes the CPG and represent both magnetite series (18%) and ilmenite series (82%) granites, which are probably formed by heterogeneous (mixed) source rocks. GP (av. MS=6.26×10−3 SI) occur as dykes (mostly trending NE-SW) intrudes the MPG, CPG and migmatites and bears the nature similar to oxidized type, magnetite series granite. FPG (av. MS= 0.666×10−3 SI) trending NE-SW occur as lensoid bodies including a large outcrop, is intrusive into both CPG and MPG, and is moderately to very strongly reduced type, ilmenite series granites, which may be derived by the melting of metapelitic crustal sources. FPG hosting microgranular (mafic magmatic) enclaves commonly exhibit high MS values (7.31–10.22×10−3 SI), which appear induced by the mixing and mingling of interacting felsic and mafic magmas prevailed in an open system. Grey (av. MS=10.30×10−3 SI) and pink (av. MS=6.72×10−3 SI) rhyolites represent oxidized type, magnetite series granites, which may have been derived from infracrustal (magmatic) protoliths. Granite series evaluation of felsic magmatic rocks of central part of Bundelkhand massif strongly suggests their varied redox conditions (differential oxygen fugacity) mostly intrinsic to magma source regions and partially modified by hydrothermal and tectonic processes acting upon them.  相似文献   

12.
Ilmenite and magnetite are investigated from the point of viewof their distribution, microtexture, and chemical composition(major and minor elements) in the Bjerkrem-Sogndal massif (Egersundarea, South-Rogaland, SW. Norway). This massif is an igneouslayered synkinematic lopolith made up of cumulates of the anorthosite-mangeritesuite. The lower part of the massif presents a rhythmic structure. The microtextures of ilmenite result from simple exsolutionof ilmenite-hematite solid solutions. Magnetite contains intergrowthsof ilmenite formed by oxidation-exsolution of ulv?spinel-magnetitesolid-solutions. In the stratigraphic sequence, on a large scale, ilmenite appearsfirst alone, and is then accompanied by magnetite; its hematitecontent decreases towards the top of the massif, while the titaniumcontent of the magnetite increases. On the scale of the rhythms,similar trends but of lesser amplitude are also observed. Evidence of deuteric readjustment of the orthomagmatic compositionof the two oxides is provided (1) by the observation of microtexturesat the contact between grains (zoning of primary ilmenite andrim of secondary ilmenite) (2) by the existence of differencesin chemical composition between isolated grains and grains incontact, and (3) by the determination of the equilibrium temperatureby means of the Buddington and Lindsley geothermometer. Reconstitution of the T-fo2 orthomagmatic conditions in twoparticular levels of the massif shows that the reducing characterof the magma increases during differentiation. The sudden changesin the oxide assemblage at the base of the rhythms reflect asudden increase in the fo2 of the magma. These increases, asshown by variation in Cr, Ni, and Co, are due to recurrencesof the basic character of the magma. The variations of the minor elements Mn, V, Ga, and Zn are interpretedin terms of the influence of the deuteric readjustment. It followsthat the ratios Mn/Fe2+, Ga/Fe3+, and Zn/Fe2+ increase and thatthe ratio V/Fe3+ decreases in the magma in the course of differentiation.The distribution of Mn between ilmenite and magnetite is discussed. Intermittent supplies of undifferentiated magma are proposedas the geological mechanism controlling the chemical recurrencesassociated with the rhythmic structure.  相似文献   

13.
为了解大兴安岭中段晚三叠世时期的构造背景,对该时期哈达陶勒盖组火山岩进行了岩石学、锆石U-Pb年代学及地球化学等方面的研究.哈达陶勒盖组火山岩可划分为中性系列安粗岩、安山岩,中酸性系列石英粗安岩及酸性系列流纹岩,形成年龄分别为:210.9±3.5 Ma、216.6±3.1 Ma、216.9±2.1 Ma和230.2±2.2 Ma.中性系列岩浆来源于原始地幔的部分熔融,并遭受俯冲板片释放流体的强烈富集作用.岩浆演化过程中结晶分异作用不明显,但遭受较强的地壳混染.中酸性系列和酸性系列岩浆来源于相对较浅的地壳物质深熔,前者岩浆演化过程中结晶分异作用较弱,而后者则较强.大兴安岭中段晚三叠世时期的构造演化背景受蒙古-鄂霍茨克洋板块向南俯冲作用的影响明显,在研究区表现为弧后伸展的构造背景.俯冲板片的断离拆沉引起了软流圈物质上涌,并导致伸展构造背景的形成,也为哈达陶勒盖组火山岩原始岩浆的形成提供了热量来源.   相似文献   

14.
拉拉铁氧化物-铜-金-钼-稀土矿床的成矿年龄一直悬而未决.文章采用辉钼矿Re-Os同位素方法,首次对该矿床的形成年龄进行了直接测定.4个样品的测定结果为:928(±1)~1 005(±1) Ma.这一结果与矿床的地质事实相吻合,因此它代表了拉拉矿床的成矿时代.根据这一年龄数据与赋矿围岩河口群的变质年龄相一致等证据,初步提出拉拉矿床为变质热液成因.此外拉拉矿床的矿化时代与Rodinia泛大陆拼贴的时限相当,这表明Rodinia泛大陆拼贴事件对扬子地块的成矿作用产生了深刻的影响.  相似文献   

15.
《International Geology Review》2012,54(12):1576-1582
Original calculations of free energy and enthalpy of the extreme members of the magnesioferrite- magnetite isomorphous series and the earlier data indicate that Mg-magnetites are produced in alkaline systems subject to aeration by atmospheric oxygen. The decrease of the magnesium content of Mg-magnetites in the younger generations of certain Angara-Ilim iron ores is explainable by a progressive increase in alkalinity of the system (with PO2 and Mg++ activity essentially unchanged) and not only by a decrease in magnesium content of the hydrothermal solutions. Within the pH-Eh coordinates of the system, a decrease in the Mg++ activity causes a shift in the fields' stability boundaries of the paragenesis toward the alkaline side; a minor shift of the pH limits of formation of the minerals toward the acid side is the result of an increase in the temperature. Magnesioferrite may be formed in weakly acid, as well as in alkaline systems; magnetite — in weakly alkaline; hematite — in strongly acid systems. — IGR Staff.  相似文献   

16.
FLOYD  P. A. 《Journal of Petrology》1976,17(4):522-545
The characteristic rocks of the Upper Palaeozoic greenstonesof S.W. England are intrusive dolerites and extrusive basicpillow lavas with minor intermediate volcanics and ultrabasics(picrites). Pyroclastics are represented by keratophyric andbasic tuffs. The intrusive greenstones show varying degrees of alteration(spilitization) from a primary ilmenite-plagioclase-clinopyroxene?olivineassemblage to a hydrous low-grade spilite (or meta-dolerite)assemblage composed of variable proportions of albite, chlorite,epidote, calcite, and amphibole. Based on the distribution of elements little affected by secondaryprocesses (Ti, P, Y, Nb, and Zn), the intrusive greenstonescontain representatives of both the alkali olivine basalt andtholeiitic basalt magma series. Magmatic differentiation isgenerally minimal with the Devonian alkali basalt greenstonesbeing principally basaltic, while some of the Carboniferousalkali basalt greenstones tend towards mugearitic compositions.No intrusive acid differentiates have yet been reported. Apart from differences of magma type and minor differentiation,low-grade alteration or ‘spilitization’ has alsogoverned the geochemical variation seen in the greenstones.Spilitization caused (a) local redistribution of principallyCa (forming epidote-rich and calcite-rich patches) and Mg (formingchlorite-rich patches), together with their respective coherenttrace elements, and (b) the variable, but often limited, lossof Ca, Sr, K, Rb, and Ba from many bodies, together with a gainin Na and H2O. Progressive hydration, however, caused a decreasein the oxidation ratio—a feature found to be common inmany spilitic suites and mainly governed by the relative distributionof chlorite versus epidote.  相似文献   

17.
Petrology of Santorini Volcano, Cyclades, Greece   总被引:1,自引:1,他引:1  
The Pliocene to Recent lavas, dyke rocks, and cognate xenolithsof Santorini island group belong to four distinct series, eachof high-alumina basalt-andesite-dacite type. The oldest seriesincludes hornblende dacites and minor basaltic andesites. Theformer contain hornblende-rich cognate xenoliths of basalticcomposition, which consist essentially of crystals ‘floating’in residual acid liquid (glass). The chemical variation of theseries, like that of lavas of volcanic centres north-west ofSantorini, is of ‘calc-alkali’ type. The second and third series consist of a range of lavas frombasalt to rhyodacite. No hydrous mineral occurs as a stablephase. Augite is the phenocrystal pyroxene of basalts; augiteand hypersthene of andesites and dacites. The groundmass pyroxenesof basalts and most andesites are augite and pigeonite, whiledistinctive hornblende xenocryst-bearing andesites of the secondseries, and acid lavas of both second and third, carry augiteand hypersthene in the groundmass. Interstitial glass increasesin proportion from basalts to andesites, and forms a major componentof acid lavas. The second series, like the oldest, lacks absoluteiron enrichment. The third, however, shows weak iron enrichmentof andesitic relative to basaltic compositions. Of the youngest (historic) series, only the acid members (hyalodacites)have been extruded as lavas. The more basic members are representedby non-cumulate xenoliths of basaltic to andesitic compositionwhich, like those of the oldest series, consist of a mesh ofcrystals set in abundant glass. This modern series also displaysfeeble absolute iron enrichment. The compositional range of minerals other than plagioclase isvery limited in the two xenolithic series, but much greaterin the two lava series. Glass compositions are virtually constantwithin individual series. Estimates of temperatures and oxygenfugacities of Fe-Ti oxide mineral equilibration, and deductionsfrom liquid compositional trends indicate that the oldest serieswas characterized by higher fO2, and fH2O, and lower temperaturesthan the three younger, ‘dry’ series. Its silicaenrichment trend appears to have been controlled chiefly byfractionation of silica-poor hornblende, rather than magnetiteas in the younger series. The presence, in all series, of xenolithsof gabbroic cumulates, and the constancy of glass compositionssuggests that each series was generated by the tapping of adifferentiating highalumina basalt magma in a high level magmachamber.  相似文献   

18.
冀东早太古代变质岩系的主体是一套呈层分布的,各种成分麻粒岩及其某些退变质产物——斜长角闪岩类。在其上部发育变质含铁建造,而在其下部常夹有变质的镁铁质和超镁铁质岩(如变闪辉岩、变辉石岩和蛇纹石化橄榄岩等)薄层或透镜体。 麻粒岩的矿物组合是斜方辉石+单斜辉石+斜长石(常常为反条纹长石)+石英+磁铁矿±角闪石±黑云母。在变质含铁建造中局部出现包括铝硅酸盐的矿物组合(蓝晶石-石榴石-黑云母-斜长石-石英)。变质铁硅质岩可以分为两类:辉石磁铁石英岩和英榴易熔岩(张儒瑗,从柏林,1981)。  相似文献   

19.
The Khanlogh deposit in the Cenozoic Quchan-Sabzevar magmatic belt, NE Iran, is hosted by Oligocene granodioritic rock. The Khanlogh intrusive body is I-type granitoid of the calc-alkaline series. The orebodies are vein, veinlet, massive, and breccia in shape and occur along the fault zones and fractures within the host rock. Ore minerals dominantly comprise magnetite and apatite associated with epidote, clinopyroxene, calcite, quartz, and chlorite. Apatites of the Khanlogh deposit have a high concentration of REE, and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. Magnetites have a high concentration of REE and show weak to moderate LREE/HREE fractionation. They are comparable to the REE patterns in Kiruna-type iron ores and show an affinity to calc-alkaline magmas. The Khanlogh deposit is similar in the aspects of host rock lithology, alteration, mineralogy, and mineral chemistry to the Kiruna-type deposits. Field observations, hydrothermal alteration halos, style of mineralization, and the geochemical characteristics of apatite, magnetite, and host rock indicate that these magnetite veins have hydrothermal origin similar to Cenozoic Kiruna-type deposits within the Tarom subzone, NW Iran, and are not related to silica-iron oxide immiscibility, as are the major Precambrian magnetite deposits in central Iran.  相似文献   

20.
Felsic alkalic rocks are a minor component of many ocean island volcanic suites, and include trachyte and phonolite as well as various types of alkaline and peralkaline rhyolite. However, there is considerable debate on the nature of their formation; for example, are they formed by partial melting of anomalous mantle or the final products of fractional crystallization of mafic magmas. The phonolites and foidal phonolites on Rarotonga were formed by low pressure crystal fractionation of two chemically distinct parental magmas. Low silica and high silica mafic magmas produced a basanite-foidal phonolite series and an alkali basalt-phonolite series, respectively. The foidal phonolite composition evolved from the low silica mafic magmas by approximately 60% fractionation of titanaugite + leucite + nepheline + magnetite + apatite. Fractionation continued with the crystallization of aegirine-augite + nepheline + kaersutite + magnetite + apatite. The phonolites formed from the alkali basalts by approximately 40% fractionation of kaersutite + titanaugite + Fe-Ti oxide + plagioclase + apatite and continued to evolve further by fractionation of anorthoclase + nepheline + aegerine-augite + Fe-Ti oxides. As the magmas fractionated in both suites, their overall viscosities (solid + liquid) increased until a point was reached whereby viscosity inhibited the eruption of magmas with compositions intermediate between the mafic rocks and the felsic rocks. However, the magmas continued to fractionate under static conditions with the residual fluid becoming foidal phonolitic in the low silica suite or phonolitic in the high silica suite. These phonolitic liquids, as a result of an increase in volatiles and enrichment of alkalis over aluminum, would actually have a lower viscosity than the intermediate liquids. This decrease in viscosity and the switch from a magma chamber being predominantly a liquid with suspended solids to a solid crystalline network with an interstitial liquid enabled phonolitic liquids to migrate, pool, and eventually erupt on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号