首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Palaeoproterozoic orogenesis within the Archean southeastern Rae craton is related to the initial amalgamation of Laurentia. Characterizing the accompanying tectonic processes during this time has been complicated due to polymetamorphism, which results in the obscuring of the age record of the terranes involved. To improve the knowledge of the tectonic evolution of the South Rae Craton, petrologic and structural analyses are applied in conjunction with in situ trace element chemistry, inclusion barometry, U–Pb monazite and titanite, and Lu–Hf garnet chronology. The data robustly constrain Palaeoproterozoic pressure–temperature–time paths of major deformational events along the southeastern Rae craton margin. D1 occurred between 1.94 and 1.93 Ga in the Dodge-Snowbird domain, which included prograde burial of metasedimentary rocks, deposited at 2.2–2.0 Ga, and the development of migmatitic layering and east-southeast trending folds (S1, F1). Peak metamorphism is recorded in metasedimentary units at c. 1.93 Ga when rocks reached conditions of 9.0–10.5 kbar and 810–830°C. Within the Dodge-Snowbird domain, D2 imparted north-northeast trending open folds and associated axial planar cleavage (S2, F2) between 1.93 and 1.90 Ga during east-west compression that appears to have been synchronous with cooling and exhumation. Later D2 deformation, localized within the Wholdaia Lake shear zone (WLsz; ST1), developed in the footwall of this thrust-sense structure at 1,873 ± 5 Ma at conditions of 9.5–11.0 kbar and 820–850°C. The hangingwall Dodge-Snowbird domain had already cooled to below 300°C by then, indicating a significant structural and metamorphic break across the domain's western boundary. A new phase of unroofing (D3) involved pervasive amphibolite- to greenschist facies extensional shearing (ST2) within the WLsz, which overprinted ST1 foliations between 1.87 and 1.86 Ga. Continued greenschist facies shearing younger than 1.86 Ga likely ended by c. 1.83 Ga when lamprophyre dykes cut the structure, which was followed by cooling until c. 1.80 Ga. This work highlights the utility and application of multiple chronometers (zircon, monazite, titanite, garnet) along with structural and petrologic analysis that together can resolve precise orogenic cycles in polymetamorphic terranes that may otherwise be undetected. The time-resolved P–T–D histories derived here enable more robust interpretations regarding the nature and evolution of 1.9 Ga tectonism along the southeast Rae craton margin, which may be used to refine models for Laurentian terrane amalgamation.  相似文献   

2.
《Ore Geology Reviews》2010,37(4):282-292
Accretionary orogens throughout space and time represent extremely fertile settings for the formation and preservation of a wide variety of mineral deposit types. These range from those within active magmatic arcs, either in continental margin or intra-oceanic settings, to those that develop in a variety of arc-flanking environments, such as fore-arcs and back-arcs during deformation and exhumation of the continental margin. Deposit types also include those that form in more distal, far back-arc and foreland basin settings. The metallogenic signature and endowment of individual accretionary orogens are, at a fundamental level, controlled by the nature, composition and age of the sub-continental lithosphere, and a complex interplay between formational processes and preservational forces in an evolving Earth. Some deposit types, such as orogenic gold and volcanic massive sulfide (VMS) deposits, have temporal patterns that mimic the major accretionary and crustal growth events in Earth history, whereas others, such as porphyry Cu–Au–Mo and epithermal Au–Ag deposits, have largely preservational patterns. The presence at c. 3.4 Ga of (rare) orogenic gold deposits, whose formation necessitates some form of subduction–accretion, provides strong evidence that accretionary processes operated then at the margins of continental nuclei, while the widespread distribution of orogenic gold and VMS deposits at c. 2.7–2.6 Ga reflects the global distribution of accretionary orogens by this time.  相似文献   

3.
Back‐arc basins hold the key in understanding the geodynamics of orogenic processes. The Qinling–Dabie orogenic belt in central China is one of the most important orogenic belts constraining the tectonic framework of eastern Asia. However, its Palaeozoic accretionary processes remain equivocal, mainly derived from the age uncertainty of the back‐arc basin in the Qinling orogen. We carried out zircon U–Pb geochronology for two pyroclastic volcanic rocks intercalated within the Erlangping back‐arc basin basalts. They yield U–Pb ages of 435.8 ± 4.2 Ma and 435.7 ± 3.8 Ma, which precisely constrain the timing of the back‐arc basin opening. The opening of the Erlangping back‐arc basin might have been triggered by the rollback of the Proto‐Tethyan oceanic slab due to the southward migration of arc magmatism at ca. 440 Ma. The Palaeozoic tectonic evolution and orogen‐scale geodynamic processes of the Qinling orogen are thus reconstructed.  相似文献   

4.
Garnet amphibolites can provide valuable insights into geological processes of orogenic belts, but their metamorphic evolution is still poorly constrained. Garnet amphibolites from the Wutai–Hengshan area of the North China Craton mainly consist of garnet, hornblende, plagioclase, quartz, rutile and ilmenite, with or without titanite and epidote. Four samples selected in a south–north profile were studied by the pseudosection approach in order to elucidate the characteristics of their metamorphic evolution, and to better reveal the northwards prograde change in P–T conditions as established previously. For the sample from the lower Wutai Subgroup, garnet exhibits obvious two‐substage growth zoning characteristic of pyrope (Xpy) increasing but grossular (Xgr) decreasing outwards in the core, and both Xpy and Xgr increasing outwards in the rim. Phase modelling using thermocalc suggests that the garnet cores were formed by chlorite breakdown over 7–9 kbar at 530–600 °C, and rims grew from hornblende and epidote breakdown over 9.5–11.5 kbar at 600–670 °C. The isopleths of the minimum An in plagioclase and maximum Xpy in garnet were used to constrain the peak P–T conditions of ~11.5 kbar/670 °C. The modelled peak assemblage garnet + hornblende + epidote+ plagioclase + rutile + quartz matches well the observed one. Plagioclase–hornblende coronae around garnet indicate post‐peak decompression and fluid ingress. For the samples from the south Hengshan Complex, the garnet zoning weaken gradually, reflecting modifications during decompression of the rocks. Using the same approach, the rocks are inferred to have suprasolidus peak conditions, increasing northwards from 11.5 kbar/745 °C, 12.5 kbar/780 °C to 13 kbar/800 °C. Their modelled peak assemblages involve diopside, garnet, hornblende, plagioclase, rutile and quartz, yet diopside is not observed petrographically. The post‐peak decompression is characterized by diopside + garnet + quartz + melt = hornblende + plagioclase, causing the diopside consumption and garnet compositions to be largely modified. Thus, the pesudosection approach is expected to provide better pressure results than conventional thermobarometry, because the later approach cannot be applied with confidence to rocks with multi‐generation assemblages. U–Pb dating of zircon in the Wutai sample records a protolith age of c. 2.50 Ga, and a metamorphic age of c. 1.95 Ga, while zircon in the Hengshan samples records metamorphic ages of c. 1.92 Ga. The c. 1.95 Ga is interpreted to represent the pre‐peak or peak metamorphic stages, and the ages of c. 1.92 Ga are assigned to represent the cooling stages. All rocks in the Wutai–Hengshan area share similar clockwise P–T morphologies. They may represent metamorphic products at different crustal depths in one orogenic event, which included a main thickening stage at c. 1.95 Ga followed by a prolonged uplift and cooling after 1.92 Ga.  相似文献   

5.
The occurrence of high‐pressure (HP) garnet‐bearing metamorphic rocks in the southern Barberton granitoid–greenstone terrane (BGGT), South Africa, has been proposed as a key indicator of the onset of modern plate tectonics at ca. 3.2 Ga. Here, we report new zircon/titanite U–Pb ages of garnet‐bearing HP metamorphic rocks and associated granitoids in the BGGT that argue against such an interpretation. The results show that HP metamorphism occurred synchronously with granitoid magmatism in the Stolzburg domain, the supposed subducted plate, during two episodes at 3.4 and 3.2 Ga, and that these two episodes of magmatism occurred on both sides of the assumed suture zone, a feature that cannot easily be explained by the subduction model. In contrast, the coupled magmatism and metamorphism probably resulted from partial convective overturn (PCO), another viable mechanism for production and differentiation of continental crust during early Archean.  相似文献   

6.
We document the first occurrence of Fe‐rich olivine‐bearing migmatitic metapelite in the Khondalite Belt, North China Craton. Petrological analyses revealed two exotic assemblages of orthopyroxene+spinel+olivine and orthopyroxene+spinel+cordierite. Phase relation modelling suggests that these assemblages are diagnostic of ultra‐high temperature (UHT) metamorphism in the Fe‐rich system, with temperatures from 1,000 to 1,050°C at 0.6 GPa. U–Th–Pb SIMS analyses on zircon reveal a similar age of c. 1.92 Ga for the olivine‐bearing migmatite and an adjacent gabbronoritic intrusion that is therefore identified as the heat source for the UHT metamorphism. These results, coupled with additional analysis of the famous Tuguiwula sapphirine‐bearing granulite, lead to a re‐appraisal of the P–T path shape and heat source for the UHT metamorphism. We suggest that UHT metamorphism, dated between 1.92 and 1.88 Ga, across the whole Khondalite belt, proceeded from a clockwise P–T evolution with an initial near‐isobaric heating path at ~0.6–0.8 GPa, and a maximum temperature of 1,050°C followed by a cooling path with minor decompression to ~0.5 GPa. Considering our results and previous works, we propose that the orogenic crust underwent partial melting at temperature reaching 850°C and depth of ~20 to ~30 km during a period of c. 30 Ma, between 1.93 and 1.90 Ga. During this time span, the partially molten crust was continuously intruded by mafic magma pulses responsible for local greater heat supply and UHT metamorphism above 1,000°C. We propose that the UHT metamorphism in the Khondalite belt is not related to an extensional post‐collisional event, but is rather syn‐orogenic and associated with mafic magma supplies.  相似文献   

7.
The North Atlantic craton of southwestern Greenland hosts several orogenic gold occurrences, although, to date, none is in production. Four gold provinces are distinguished and include Godthåbsfjord, Tasiusarsuaq, Paamiut, and Tartoq. In the Godthåbsfjord gold province, the hypozonal gold occurrences are aligned along the major ca. 2660–2600 Ma Ivinnguit fault. Orogenic gold mineralization correlates temporally with, and is related to, ductile deformation along this first-order structure. The northern part of the Tasiusarsuaq gold province is characterized by small hypozonal gold occurrences that are controlled by 2670–2610 Ma folds and shear zones. Auriferous fluids were focused into the structures in both gold provinces during west-directed accretion of the Kapisilik terrane (2650–2580 Ma) to the already amalgamated terranes of the North Atlantic craton. In the southern part of the Tasiusarsuaq gold province, hypozonal gold mineralization is hosted in back-thrusts (Sermilik prospect) and thrusts (Bjørnesund prospect) that formed at 2740 Ma and 2860–2830 Ma, respectively. The deformation is related to the ca. 2850 Ma accretion of the Sioraq block and the Tasiusarsuaq terrane, and the 2800–2700 Ma accretion of the Tasiusarsuaq terrane and the Færingehavn and Tre Brødre terranes.Mesozonal orogenic gold mineralization is hosted in an accretionary complex in the Paamiut and Tartoq gold provinces. Gold occurrences cluster over a strike extent of approx. 40 km in thrusts and complex strike-slip settings in lateral ramps. The timing of the E-vergent terrane accretion in both areas is unknown, and could either be at ca. 2850 Ma or 2740 Ma. In the eastern part of the Paamiut gold province, quartz veins and associated alteration zones were overprinted by granulite facies metamorphism and show evidence for partial melting. These outermost parts of the accretionary complex were involved in burial-exhumation tectonics during crustal accretion.Mainly three different orogenic stages related to gold mineralization are distinguished in the North Atlantic craton between ca. 2850 Ma and 2610 Ma. These are generally accretionary tectonic episodes, and gold mineralization is hosted either in reactivated fault systems between terranes or accretionary complex structures along the deformed cratonic margin. The larger orogenic gold occurrences formed at ca. 2740–2600 Ma that appears to be a period of orogenic gold mineralization globally, although significant gold resources in the North Atlantic craton have yet to be identified.  相似文献   

8.
Accretionary orogens throughout space and time represent extremely fertile settings for the formation and preservation of a wide variety of mineral deposit types. These range from those within active magmatic arcs, either in continental margin or intra-oceanic settings, to those that develop in a variety of arc-flanking environments, such as fore-arcs and back-arcs during deformation and exhumation of the continental margin. Deposit types also include those that form in more distal, far back-arc and foreland basin settings. The metallogenic signature and endowment of individual accretionary orogens are, at a fundamental level, controlled by the nature, composition and age of the sub-continental lithosphere, and a complex interplay between formational processes and preservational forces in an evolving Earth. Some deposit types, such as orogenic gold and volcanic massive sulfide (VMS) deposits, have temporal patterns that mimic the major accretionary and crustal growth events in Earth history, whereas others, such as porphyry Cu–Au–Mo and epithermal Au–Ag deposits, have largely preservational patterns. The presence at c. 3.4 Ga of (rare) orogenic gold deposits, whose formation necessitates some form of subduction–accretion, provides strong evidence that accretionary processes operated then at the margins of continental nuclei, while the widespread distribution of orogenic gold and VMS deposits at c. 2.7–2.6 Ga reflects the global distribution of accretionary orogens by this time.  相似文献   

9.
U–Pb detrital zircon geochronology has been used to identify provenance and document sediment delivery systems during the deposition of the early Late Triassic Yanchang Formation in the south Ordos Basin. Two outcrop samples of the Yanchang Formation were collected from the southern and southwestern basin margin respectively. U–Pb detrital zircon geochronology of 158 single grains (out of 258 analyzed grains) shows that there are six distinct age populations, 250–300 Ma, 320–380 Ma, 380–420 Ma, 420–500 Ma, 1.7–2.1 Ga, and 2.3–2.6 Ga. The majority of grains with the two oldest age populations are interpreted as recycled from previous sediments. Multiple sources match the Paleozoic age populations of 380–420 and 420–500 Ma, including the Qilian–Qaidam terranes and the North Qilian orogenic belt to the west, and the Qinling orogenic belt to the south. However, the fact that both samples do not have the Neoproterozoic age populations, which are ubiquitous in these above source areas, suggests that the Late Triassic Yanchang Formation in the south Ordos Basin was not derived from the Qilian–Qaidam terranes, the North Qilian orogenic belt, and the Qinling orogenic belt. Very similar age distribution between the Proterozoic to Paleozoic sedimentary rocks and the early Late Triassic Yanchang Formation in the south Ordos Basin suggests that it was most likely recycled from previous sedimentary rocks from the North China block instead of sediments directly from two basin marginal deformation belts.  相似文献   

10.
Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largest UHP terranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to different P–T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages of c. 235–230 Ma and c. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.  相似文献   

11.
The determination of the thermal (temperature–time) histories of high‐P metamorphic terranes has been commonly based on the concepts of slow cooling and closure temperatures. In this paper, we find that this approach cannot reconcile a geochronological data set obtained from the amphibolite‐facies allochthonous Leknes Group of the Lofoten islands, Norway, which reveals an extremely complex thermal history. Using detailed results from several different geochronometers such as 40Ar/39Ar, Rb–Sr and U–Pb, we show that a model invoking multiple, short‐lived thermal pulses related to hot‐fluid infiltration channelized by shear zones can reconcile this complicated data set. This model suggests that hot fluids infiltrated throughout basement shear zones and affected the overlying cold allochthon, partially resetting U/Pb rutile and titanite ages, crystallizing new zircon and produced identical 40Ar/39Ar and Rb/Sr ages in muscovite, biotite and amphibole in various rocks throughout the region. This paper shows the enormous potential of coupling laser Ar‐spot data with thermal modelling to identify and constrain the duration of short‐lived events. An optimal P–T–t history has been derived by modelling the age data from a previously dated large muscovite crystal (Hames & Andresen, 1996, Geology, 24 :1005) and using Zr‐in‐rutile thermometry which is consistent with all geochronological data and geological constraints from the basement zones and allochthon cover. This tectonothermal model history suggests that there have been three episodic hot‐fluid and 40Ar‐free infiltration events, resulting in the total resetting of Ar ages during the Scandian (425 Ma) for 1 Ma at 650°C and two reheating events at 415 Ma for 400 ka at 650°C and at 365 Ma for 50 ka at 600°C, which are modelled as thermal spikes above an ambient temperature of 300°C. Independent confirmation of these parameters was provided by Pb‐diffusion modelling in rutile and titanite. The model suggests that the amphibolite facies rocks of the Leknes Group probably remained cold before being exhumed for at least 60 Ma (425–365 Ma) and successfully explains the presence of different minerals that crystallized or were totally/partially reset in the allochthon and in the basement. The migration of hot fluids for short periods of times within conduits extending through the basement and allochthon rock units is likely associated with episodic seismic activity during the Caledonian orogeny.  相似文献   

12.
Identifying and dating large impact structures is challenging, as many of the traditional shock indicator phases can be modified by post-impact processes. Refractory accessory phases, such as zircon, while faithful recorders of shock wave passage, commonly respond with partial U–Pb age resetting during impact events. Titanite is an accessory phase with lower Pb closure temperature than many other robust chronometers, but its potential as indicator and chronometer of impact-related processes remains poorly constrained. In this study, we examined titanite grains from the Sudbury (Ontario, Canada) and Vredefort (South Africa) impact structures, combining quantitative microstructural and U–Pb dating techniques. Titanite grains from both craters host planar microstructures and microtwins that show a common twin–host disorientation relationship of 74° about <102>. In the Vredefort impact structure, the microtwins deformed internally and developed high- and low-angle grain boundaries that resulted in the growth of neoblastic crystallites. U–Pb isotopic dating of magmatic titanite grains with deformation microtwins from the Sudbury impact structure yielded a 207Pb/206Pb age of 1851?±?12 Ma that records either the shock heating or the crater modification stage of the impact event. The titanite grains from the Vredefort impact structure yielded primarily pre-impact ages recording the cooling of the ultra-high-temperature Ventersdorp event, but domains with microtwins or planar microstructures show evidence of U–Pb isotopic disturbance. Despite that the identified microtwins are not diagnostic of shock-metamorphic processes, our contribution demonstrates that titanite has great potential to inform studies of the terrestrial impact crater record.  相似文献   

13.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

14.
The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U–Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the ore-related porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO2 and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0 ± 5.9 Ma, consistent with the porphyry zircon U–Pb age (36.07 ± 0.43 Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206Pb/238U age of 33.1 ± 1.0 Ma (MSWD = 2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1 Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma.  相似文献   

15.
LA‐ICP‐MS U–Pb detrital zircon studies typically analyse 50–200 grains per sample, with the consequent risk that minor but geologically important age components (e.g., the youngest detrital zircon population) are not detected, and higher abundance age components are misrepresented, rendering quantitative comparisons between samples impossible. This study undertook rapid U–Pb LA‐ICP‐MS analyses (8 s per 18–47 μm diameter spot including baseline and ablation) of zircon, apatite, rutile and titanite using an aerosol rapid introduction system (ARIS). As the ARIS resolves individual single pulses at fast sampling rates, spot analyses require a high repetition rate (> 50 Hz) so the signal does not return to baseline and mass sweep times (> 80 ms) that span several laser pulses (i.e., major undersampling of the signal). All rapid U–Pb spot analyses employed 250–300 pulses, repetition rates of 53–65 Hz (total ablation times of 4.1–5.7 s) and low fluence (1.75–2.5 J cm?2), resulting in pit depths of ca. 15 μm. Zircon, apatite, rutile and titanite reference material data yield an accuracy and precision (2s) of < 1% for pre‐Cenozoic reference materials and < 2% for younger reference materials. We present a detrital zircon data set from a Neoproterozoic tillite where > 1000 grains were analysed in < 3 h with a precision and accuracy comparable to conventional LA‐ICP‐MS analytical protocols, demonstrating the rapid acquisition of huge detrital data sets.  相似文献   

16.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

17.
The petrogenetic relations among Ti‐rich minerals in high‐grade metabasites is illuminated here through a detailed petrological investigation of an anatectic garnet–clinopyroxene granulite from the Grenville Province, Ontario, Canada containing rutile, titanite and ilmenite in distinct microtextural settings. Garnet porphyroblasts exhibit zoned Ti concentrations (up to 0.15 wt% TiO2 in their cores), as well as a variety of rutile inclusion types, including clusters of small, variably elongate grains and thin (≤1 μm) oriented needles. Calcite inclusions in garnet, commonly observed surrounding garnet cores containing quartz and clinozoisite, indicate the presence of evolving C–O–H fluids during garnet growth and suggest that the rutile clusters may have formed from subsequent Ti diffusion and rutile precipitation within existing fluid inclusions. Titanite forms large subhedral crystals and typically occurs where the primary garnet–clinopyroxene assemblage is in contact with leucosome containing megacrystic hornblende, silvialitic scapolite and calcic plagioclase. Many titanite crystals exhibit marginal subgrains that correspond with sharp changes in their major and trace element composition, likely related to a dissolution–precipitation or recrystallization process following primary crystallization. Clinopyroxene–ilmenite symplectite coronas surround titanite in most locations, likely forming from reaction with the hornblende‐plagioclase matrix (±fluids/melt). Integration of multi‐equilibria thermobarometry and Zr thermometry in rutile and titanite with phase equilibrium modelling allows definition of a clockwise P–T path evolving to peak pressures of ~1.5 GPa at ~750°C during garnet and rutile growth, followed by peak temperature conditions of ~1.2 GPa and ~820–880°C associated with melt‐present titanite growth, and finally cooling and decompression to regional amphibolite facies conditions (~1.0 GPa and ~750°C) associated with the formation of clinopyroxene–ilmenite symplectites surrounding titanite. P–T pseudosections calculated for the pristine (leucosome‐ and titanite ‐free) metabasite bulk composition reproduce much of the prograde phase relations, but predict rutile as the stable Ti‐rich mineral at the peak thermal conditions associated with melt‐present titanite growth. The PM(CaO) and TM(CaO) models show that bulk CaO concentrations have a significant effect on the stability ranges of titanite and rutile. Increased bulk CaO tends to stabilize titanite to higher pressure and temperature at the expense of rutile, with a ≥15% increase in CaO producing the observed titanite‐bearing assemblage at high‐P granulite facies conditions. Thus, the model results are consistent with the textural observations, which suggest that titanite stability is associated with a chemical exchange between the host metabasite and a Ca‐rich melt.  相似文献   

18.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

19.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   

20.
Three new U-Pb zircon age determinations are reported from the Horred region, south-southeast of Göteborg, SW Sweden. This is a region of the Southwest Scandinavian Domain, within which a major NS trending shear zone and tectonic boundary, the Mylonite Zone, juxtaposes comparatively weakly migmatised lithologies in the west against more intensely migmatised gneisses in the east.West of the Mylonite Zone, a metavolcanic rock (the Mjösjödacite) yields an age of 1643 ± 29 Ma, whereas a cross-cutting plutonic rock (the Idala tonalite) has an age of 1584 ± 15 Ma. Together with a recent age for a volcanic rock from theÅmål region farther north (1.61 Ga, Lundqvist and Skiöld, 1992), these ages help to establish the existence of a coherent calc-alkaline igneous belt of 1.6 Ga age for which the nameÅmål-Horred Belt is proposed.East of the Mylonite Zone, a presumably metavolcanic rock (the Grimmared gneiss) yields an age of 1.61 Ga. The obtained age and the compositional similarity of rocks on each side of the Mylonite Zone indicate that more deformed and more strongly metamorphosed equivalents of the rocks in theÅmål-Horred Belt may occur also to the east of the Mylonite Zone in what is termed the Eastern Segment of the Southwest Scandinavian Domain.The new results establish theÅmål-Horred Belt as a major geological unit younger than most other crustal components in southern Sweden such as theÖstfold-Marstrand Belt ( 1.76 Ga), the Eastern Segment gneisses (> 1.66 Ga) and the three age groups of the Transscandinavian Igneous Belt ( 1.81 – 1.65 Ga; Larson and Berglund, 1992). The configuration of the crustal units in SW Sweden appears to necessitate more complex Proterozoic models than those with a persistent younging from the present east to the west.The present concept of the “Gothian orogeny” must be revised since at least two different orogenic episodes at 1.7 and 1.6 Ga can now be distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号