首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An iterative solution of weighted total least-squares adjustment   总被引:9,自引:0,他引:9  
Total least-squares (TLS) adjustment is used to estimate the parameters in the errors-in-variables (EIV) model. However, its exact solution is rather complicated, and the accuracies of estimated parameters are too difficult to analytically compute. Since the EIV model is essentially a non-linear model, it can be solved according to the theory of non-linear least-squares adjustment. In this contribution, we will propose an iterative method of weighted TLS (WTLS) adjustment to solve EIV model based on Newton–Gauss approach of non-linear weighted least-squares (WLS) adjustment. Then the WLS solution to linearly approximated EIV model is derived and its discrepancy is investigated by comparing with WTLS solution. In addition, a numerical method is developed to compute the unbiased variance component estimate and the covariance matrix of the WTLS estimates. Finally, the real and simulation experiments are implemented to demonstrate the performance and efficiency of the presented iterative method and its linearly approximated version as well as the numerical method. The results show that the proposed iterative method can obtain such good solution as WTLS solution of Schaffrin and Wieser (J Geod 82:415–421, 2008) and the presented numerical method can be reasonably applied to evaluate the accuracy of WTLS solution.  相似文献   

2.
1 GraphtheoryanddefinitionsAgraphGconsistsofpoints (NODES)andlines (EDGES)connectingthesepoints .Thepointsarecallednodesandlinesareedges .Adirectedgraphisagraphinwhichtheedgescon nectingthenodesarespecified .Atreeisaconnectedgraphwithoutanyloop .Aloopisaclos…  相似文献   

3.
The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Γ zz },{Γ xz , Γ yz} and {Γ xx -Γ yy ,2 Γxy}are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.  相似文献   

4.
《测量评论》2013,45(6):275-284
Abstract

With the modern calculating machine in easy reach of every computer, the problem of determining the position of an occupied point from which direction observations have been made to three or more known points has become quite simple. The method outlined below is quite elegant in form and exceedingly simple on the machine. Let A, B, C be the three points whose co-ordinates (X1Y1), (X2Y2), (X3Y3) are known, and let (XY) be the co-ordinates of the point P which we wish to fix.  相似文献   

5.
Array algebra forms the general base of fast transforms and multilinear algebra making rigorous solutions of a large number (millions) of parameters computationally feasible. Loop inverses are operators solving the problem of general matrix inverses. Their derivation starts from the inconsistent linear equations by a parameter exchangeXL 0, where X is a set of unknown observables,A 0 forming a basis of the so called “problem space”. The resulting full rank design matrix of parameters L0 and its ℓ-inverse reveal properties speeding the computational least squares solution expressed in observed values . The loop inverses are found by the back substitution expressing ∧X in terms ofL through . Ifp=rank (A) ≤n, this chain operator creates the pseudoinverseA +. The idea of loop inverses and array algebra started in the late60's from the further specialized case,p=n=rank (A), where the loop inverse A 0 −1 (AA 0 −1 ) reduces into the ℓ-inverse A=(ATA)−1AT. The physical interpretation of the design matrixA A 0 −1 as an interpolator, associated with the parametersL 0, and the consideration of its multidimensional version has resulted in extended rules of matrix and tensor calculus and mathematical statistics called array algebra.  相似文献   

6.
On symmetrical three-dimensional datum conversion   总被引:2,自引:0,他引:2  
A 3-D similarity transformation is frequently used to convert GPS-WGS84-based coordinates to those in a local datum using a set of control points with coordinate values in both systems. In this application, the Gauss-Markov (GM) model is often employed to represent the problem, and a least-squares approach is used to compute the parameters within the mathematical model. However, the Gauss–Markov model considers the source coordinates in the data matrix (A) as fixed or error-free; this is an imprecise assumption since these coordinates are also measured quantities and include random errors. The errors-in-variables (EIV) model assumes that all the variables in the mathematical model are contaminated by random errors. This model may be solved using the relatively new total least-squares (TLS) estimation technique, introduced in 1980 by Golub and Van Loan. In this paper, the similarity transformation problem is analyzed with respect to the EIV model, and a novel algorithm is described to obtain the transformation parameters. It is proved that even with the EIV model, a closed form Procrustes approach can be employed to obtain the rotation matrix and translation parameters. The transformation scale may be calculated by solving the proper quadratic equation. A numerical example and a practical case study are presented to test this new algorithm and compare the EIV and the GM models.  相似文献   

7.
Crop yield estimation has an important role on economy development and its accuracy and speed influence yield price and helps in deciding the excess or deficit production conditions. The water productivity evaluates the irrigation command through water use efficiency (WUE). Remote sensing (RS) and geographical information system (GIS) techniques were used for crop yield and water productivity estimation of wheat crop (Triticum aestivum) grown in Tarafeni South Main Canal (TSMC) irrigation command of West Bengal State in India. One IRS P6 image and four wide field sensor (WiFS) images for different months of winter season were used to determine the Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) for area under wheat crop. The temporally and spatially distributed spectral growth profile and AREASUM of NDVI (ANDVI) and SAVI (ASAVI) with time after sowing of wheat crop were developed and correlated with actual crop yield of wheat (Yact). The developed relationships between ASAVI and Yact resulted high correlation in comparison to that of ANDVI. Using the developed model the RS based wheat yield (YRS) predicted from ASAVI varied on entire TSMC irrigation command from 22.67 to 33.13 q ha−1 respectively, which gave an average yield of 26.50 q ha−1. The RS generated yield based water use efficiency (WUEYRS) for water supplied from canal of TSMC irrigation command was found to be 6.69 kg ha−1 mm−1.  相似文献   

8.
 Since the beginning of the International Global Navigation Satellite System (GLONASS) Experiment, IGEX, in October 1998, the Center for Orbit Determination in Europe (CODE) has acted as an analysis center providing precise GLONASS orbits on a regular basis. In CODE's IGEX routine analysis the Global Positioning System (GPS) orbits and Earth rotation parameters are introduced as known quantities into the GLONASS processing. A new approach is studied, where data from the IGEX network are combined with GPS observations from the International GPS Service (IGS) network and all parameters (GPS and GLONASS orbits, Earth rotation parameters, and site coordinates) are estimated in one processing step. The influence of different solar radiation pressure parameterizations on the GLONASS orbits is studied using different parameter subsets of the extended CODE orbit model. Parameterization with three constant terms in the three orthogonal directions, D, Y, and X (D = direction satellite–Sun, Y = direction of the satellite's solar panel axis), and two periodic terms in the X-direction, proves to be adequate for GLONASS satellites. As a result of the processing it is found that the solar radiation pressure effect for the GLONASS satellites is significantly different in the Y-direction from that for the GPS satellites, and an extensive analysis is carried out to investigate the effect in detail. SLR observations from the ILRS network are used as an independent check on the quality of the GLONASS orbital solutions. Both processing aspects, combining the two networks and changing the orbit parameterization, significantly improve the quality of the determined GLONASS orbits compared to the orbits stemming from CODE's IGEX routine processing. Received: 10 May 2000 / Accepted: 9 October 2000  相似文献   

9.
World Geodetic Datum 2000   总被引:7,自引:1,他引:6  
 Based on the current best estimates of fundamental geodetic parameters {W 0,GM,J 2,Ω} the form parameters of a Somigliana-Pizzetti level ellipsoid, namely the semi-major axis a and semi-minor axis b (or equivalently the linear eccentricity ) are computed and proposed as a new World Geodetic Datum 2000. There are six parameters namely the four fundamental geodetic parameters {W 0,GM,J 2,Ω} and the two form parameters {a,b} or {a,ɛ}, which determine the ellipsoidal reference gravity field of Somigliana-Pizzetti type constraint to two nonlinear condition equations. Their iterative solution leads to best estimates a=(6 378 136.572±0.053)m, b=(6 356 751.920 ± 0.052)m, ɛ=(521 853.580±0.013)m for the tide-free geoide of reference and a=(6 378 136.602±0.053)m, b=(6 356 751.860±0.052)m, ɛ=(521 854.674 ± 0.015)m for the zero-frequency tide geoid of reference. The best estimates of the form parameters of a Somigliana-Pizzetti level ellipsoid, {a,b}, differ significantly by −0.39 m, −0.454 m, respectively, from the data of the Geodetic Reference System 1980. Received: 1 February 1999 / Accepted: 31 August 1999  相似文献   

10.
A set of2261 5°×5° mean anomalies were used alone and with satellite determined harmonic coefficients of the Smithsonian' Institution to determine the geopotential expansion to various degrees. The basic adjustment was carried out by comparing a terrestrial anomaly to an anomaly determined from an assumed set of coefficients. The (14, 14) solution was found to agree within ±3 m of a detailed geoid in the United States computed using1°×1° anomalies for an inner area and satellite determined anomalies in an outer area. Additional comparisons were made to the input anomaly field to consider the accuracy of various harmonic coefficient solutions. A by-product of this investigation was a new γE=978.0463 gals in the Potsdam system or978.0326 gals in an absolute system if −13.7 mgals is taken as the Potsdam correction. Combining this value of γE withf=1/298.25, KM=3.9860122·10 22 cm 3 /sec 2 , the consistent equatorial radius was found to be6378143 m.  相似文献   

11.
Robust estimation of systematic errors of satellite laser range   总被引:13,自引:0,他引:13  
Methods for analyzing laser-ranging residuals to estimate station-dependent systematic errors and to eliminate outliers in satellite laser ranges are discussed. A robust estimator based on an M-estimation principle is introduced. A practical calculation procedure which provides a robust criterion with high breakdown point and produces robust initial residuals for following iterative robust estimation is presented. Comparison of the results from the least-squares method with those of the robust method shows that the results of the station systematic errors from the robust estimator are more reliable. Received: 18 March 1997 / Accepted: 17 March 1999  相似文献   

12.
In order to achieve to GPS solutions of first-order accuracy and integrity, carrier phase observations as well as pseudorange observations have to be adjusted with respect to a linear/linearized model. Here the problem of mixed integer-real valued parameter adjustment (IRA) is met. Indeed, integer cycle ambiguity unknowns have to be estimated and tested. At first we review the three concepts to deal with IRA: (i) DDD or triple difference observations are produced by a properly chosen difference operator and choice of basis, namely being free of integer-valued unknowns (ii) The real-valued unknown parameters are eliminated by a Gauss elimination step while the remaining integer-valued unknown parameters (initial cycle ambiguities) are determined by Quadratic Programming and (iii) a RA substitute model is firstly implemented (real-valued estimates of initial cycle ambiguities) and secondly a minimum distance map is designed which operates on the real-valued approximation of integers with respect to the integer data in a lattice. This is the place where the integer Gram-Schmidt orthogonalization by means of the LLL algorithm (modified LLL algorithm) is applied being illustrated by four examples. In particular, we prove that in general it is impossible to transform an oblique base of a lattice to an orthogonal base by Gram-Schmidt orthogonalization where its matrix enties are integer. The volume preserving Gram-Schmidt orthogonalization operator constraint to integer entries produces “almost orthogonal” bases which, in turn, can be used to produce the integer-valued unknown parameters (initial cycle ambiguities) from the LLL algorithm (modified LLL algorithm). Systematic errors generated by “almost orthogonal” lattice bases are quantified by A. K. Lenstra et al. (1982) as well as M. Pohst (1987). The solution point of Integer Least Squares generated by the LLL algorithm is = (L')−1[L'◯] ∈ ℤ m where L is the lower triangular Gram-Schmidt matrix rounded to nearest integers, [L], and = [L'◯] are the nearest integers of L'◯, ◯ being the real valued approximation of z ∈ ℤ m , the m-dimensional lattice space Λ. Indeed due to “almost orthogonality” of the integer Gram-Schmidt procedure, the solution point is only suboptimal, only close to “least squares.” ? 2000 John Wiley & Sons, Inc.  相似文献   

13.
Geodetic adjustment problems frequently require the solution of large systems of linear equations. An approximation method is presented based on the decomposition of the estimated covariance matrix of the observation matrix, calculated in a pre-processing step, into a system of eigenvalues and eigenvectors. Neglecting the non-dominant eigenvalues and the assigned eigenvectors, the matrix of the residuals is approximated applying the synthesis formula of principal-component analysis. Although the number of observation vectors in the multivariate Gauss–Markoff model is drastically reduced, all unknown parameters are estimated approximately. The described method is tested using a numerical example of satellite altimetry. Received: 6 January 1997 / Accepted: 16 November 1998  相似文献   

14.
Least-squares by observation equations is applied to the solution of geodetic boundary value problems (g.b.v.p.). The procedure is explained solving the vectorial Stokes problem in spherical and constant radius approximation. The results are Stokes and Vening-Meinesz integrals and, in addition, the respective a posteriori variance-covariances. Employing the same procedure the overdeterminedg.b.v.p. has been solved for observable functions potential, scalar gravity, astronomical latitude and longitude, gravity gradients Гxz, Гyz, and Гzz and three-dimensional geocentric positions. The solutions of a large variety of uniquely and overdeterminedg.b.v.p.'s can be obtained from it by specializing weights. Interesting is that the anomalous potential can be determined—up to a constant—from astronomical latitude and longitude in combination with either {Гxzyz} or horizontal coordinate corrections Δx and Δy, or both. Dual to the formulation in terms of observation equations the overdeterminedg.b.v.p.'s can as well be solved by condition equations. Constant radius approximation can be overcome in an iterative approach. For the Stokes problem this results in the solution of the “simple” Molodenskii problem. Finally defining an error covariance model with a Krarup-type kernel first results were obtained for a posteriori variance-covariance and reliability analysis.  相似文献   

15.
The present study investigates the characteristics of CO2 exchange (photosynthesis and respiration) over agricultural site dominated by wheat crop and their relationship with ecosystem parameters derived from MODIS. Eddy covariance measurement of CO2 and H2O exchanges was carried out at 10 Hz interval and fluxes of CO2 were computed at half-hourly time steps. The net ecosystem exchange (NEE) was partitioned into gross primary productivity (GPP) and ecosystem respiration (R e) by taking difference between day-time NEE and respiration. Time-series of daily reflectance and surface temperature products at varying resolution (250–1000 m) were used to derive ecosystem variables (EVI, NDVI, LST). Diurnal pattern in Net ecosystem exchange reveals negative NEE during day-time representing CO2 uptake and positive during night as release of CO2. The amplitude of the diurnal variation in NEE increased as LAI crop growth advances and reached its peak around the anthesis stage. The mid-day uptake during this stage was around 1.15 mg CO2 m−2 s−1 and night-time release was around 0.15 mg CO2 m−2 s−1. Linear and non-linear least square regression procedures were employed to develop phenomenological models and empirical fits between flux tower based GPP and NEE with satellite derived variables and environmental parameters. Enhanced vegetation index was found significantly related to both GPP and NEE. However, NDVI showed little less significant relationship with both GPP and NEE. Furthemore, temperature-greenness (TG) model combining scaled EVI and LST was parameterized to estimate daily GPP over dominantly wheat crop site. (R 2 = 0.77). Multi-variate analysis shows that inclusion of LST or air temperature with EVI marginally improves variance explained in daily NEE and GPP.  相似文献   

16.
In the linear estimation problem associated with an experiment that is exactly repeated a number of times, the estimation parameters may naturally be partitioned into two groups, those that are common to all repetitions, and those that are particular to each repeat experiment. We derive least-squares solutions that minimise in norm either group of parameters, as also the trace of the corresponding covariance matrix. These solutions are applied to the station adjustment of triangulation surveying, and to the estimation problem of satellite radar altimetry: to estimate simultaneously mean sea surface heights and residual radial orbit errors, while minimising the norm of either group of parameters. This altimetry problem is considered in the cases of collinear, local crossover and global crossover data. Received: 6 January 1997 / Accepted: 21 December 1998  相似文献   

17.
In satellite data analysis, one big advantage of analytical orbit integration, which cannot be overestimated, is missed in the numerical integration approach: spectral analysis or the lumped coefficient concept may be used not only to design efficient algorithms but overall for much better insight into the force-field determination problem. The lumped coefficient concept, considered from a practical point of view, consists of the separation of the observation equation matrix A=BT into the product of two matrices. The matrix T is a very sparse matrix separating into small block-diagonal matrices connecting the harmonic coefficients with the lumped coefficients. The lumped coefficients are nothing other than the amplitudes of trigonometric functions depending on three angular orbital variables; therefore, the matrix N=B T B will become for a sufficient length of a data set a diagonal dominant matrix, in the case of an unlimited data string length a strictly diagonal one. Using an analytical solution of high order, the non-linear observation equations for low–low SST range data can be transformed into a form to allow the application of the lumped concept. They are presented here for a second-order solution together with an outline of how to proceed with data analysis in the spectral domain in such a case. The dynamic model presented here provides not only a practical algorithm for the parameter determination but also a simple method for an investigation of some fundamental questions, such as the determination of the range of the subset of geopotential coefficients which can be properly determined by means of SST techniques or the definition of an optimal orbital configuration for particular SST missions. Numerical results have already been obtained and will be published elsewhere. Received: 15 January 1999 / Accepted: 30 November 1999  相似文献   

18.
Knudsen 《Journal of Geodesy》1987,61(2):145-160
The estimation of a local empirical covariance function from a set of observations was done in the Faeroe Islands region. Gravity and adjusted Seasat altimeter data relative to theGPM2 spherical harmonic approximation were selected holding one value in celles of1/8°×1/4° covering the area. In order to center the observations they were transformed into a locally best fitting reference system having a semimajor axis1.8 m smaller than the one ofGRS80. The variance of the data then was273 mgal 2 and0.12 m 2 respectively. In the calculations both the space domain method and the frequency domain method were used. Using the space domain method the auto-covariances for gravity anomalies and geoid heights and the cross-covariances between the quantities were estimated. Furthermore an empirical error estimate was derived. Using the frequency domain method the auto-covariances of gridded gravity anomalies was estimated. The gridding procedure was found to have a considerable smoothing effect, but a deconvolution made the results of the two methods to agree. The local covariance function model was represented by a Tscherning/Rapp degree-variance model,A/((i−1)(i−2)(i+24))(R B /R E )2i+2, and the error degree-variances related to the potential coefficient setGPM2. This covariance function was adjusted to fit the empirical values using an iterative least squares inversion procedure adjusting the factor A, the depth to the Bjerhammar sphere(R E R B ), and a scale factor associated with the error degree-variances. Three different combinations of the empirical covariance values were used. The scale factor was not well determined from the gravity anomaly covariance values, and the depth to the Bjerhammar sphere was not well determined from geoid height covariance values only. A combination of the two types of auto-covariance values resulted in a well determined model.  相似文献   

19.
An intrresting variation on the familiar method of determining the earth's equatorial radius ae, from a knowledge of the earth's equatorial gravity is suggested. The value of equatorial radius thus found is 6378,142±5 meters. The associated parameters are GM=3.986005±.000004 × 1020 cm3 sec-−2 which excludes the relative mass of atmosphere ≅10−6 ξ GM, the equatorial gravity γe 978,030.9 milligals (constrained in this solution by the Potsdam Correction of 13.67 milligals as the Potsdam Correction is more directly, orless indirectly, measurable than the equatorial gravity) and an ellipsoidal flattening of f=1/298.255.  相似文献   

20.
Summary The system of normal equations for the adjustment of a free network is a singular one. Therefore, a number of coordinates has to be fixed according to the matrix. The mean square errors and the error ellipses of such an adjustment are dependent on this choice. This paper gives a simple, direct method for the adjustment of free networks, where no coordinates need to be fixed. This is done by minimizing not only the sum of the squares of the weighted errorsV T PV=minimun but also the Euclidean norm of the vectorX and of the covariance matrixQ X T X=minimum trace (Q)=minimum This last condition is crucial for geodetic problems of this type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号