首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Multispacecraft observations of energetic protons (E p 500 keV) were obtained by the APL/JHU instruments on board the IMP-7 and 8 spacecraft and the Voyager-1 and 2 deep space probes, in order to study the generation of solar flare Energetic Storm Particle (ESP) events at widely separated locations on the same shock front. These locations are presumably characterized, on the average, by different interplanetary magnetic field-shock front configurations, i.e. quasi-perpendicular (quasi-parallel) shocks for eastern (western) solar flare sites. The multispacecraft energetic proton observations show that substantial differences in the ESP proton intensity enhancements (defined as the ratio of intensity increases near the shock over the ambient solar proton population) are detected at these energies for locations on the shock front with wide heliolongitude separations. In particular, large ESP proton intensity enhancements are detected at locations on the shock front for which the solar flare site generating the shock is to the east of the spacecraft meridian, whereas only weak ESP events are observed at locations on the same shock for which the flare site is to the west of the spacecraft meridian. The results indicate that acceleration of ESP protons to E p 500 keV takes place exclusively at the quasi-perpendicular shock front domain, consistent with the shock drift acceleration mechanism (Armstrong et al., 1977).  相似文献   

2.
Pitch angle scattering of energetic particles (100 MeV) in the interplanetary medium are studied using Helios 1 and 2 magnetometer and plasma data during 1976 near the minimum of solar activity. An IMF configuration was used in the computer experiments which allowed the pitch angle diffusion coefficient, D and hence the parallel mean free path, to be determined. The radial mean free path was found to vary as r r -0.9 between 0.4 and 1 AU, but between 0.3 and 0.4 AU it decreases significantly. To reconcile our value of r at 1 AU, lying between 0.01 and 0.02 AU, with the average prompt solar proton event profile, an increasing value of r at lower radial distances would be required.  相似文献   

3.
We present a sample of solar energetic particle events observed between November 18 and December 31, 1982 by the HELIOS 1, the VENERA 13, and IMP 8 spacecraft. During the entire time period all three spacecraft were magnetically connected to the western hemisphere of the Sun with varying radial and angular distances from the flares. Eleven proton events, all of them associated with interplanetary shocks, were observed by the three spacecraft. These events are visible in the low-energy (about 4 MeV) as well as the high-energy (30 MeV) protons. In the largest events protons were observed up to energies of about 100 MeV. The shocks were rather fast and in some cases extended to more than 90% east of the flare site. Assuming a symmetrical configuration, this would correspond to a total angular extent of some interplanetary shocks of about 180%. In addition, due to the use of three spacecraft at different locations we find some indication for the shape of the shock front: the shocks are fastest close to the flare normal and are slower at the eastern flank. For particle acceleration we find that close to the flare normal the shock is most effective in accelerating energetic particles. This efficiency decreases for observers connected to the eastern flank of the shock. In this case, the efficiency of shock acceleration for high-energy protons decreases faster than for low-energy protons. Observation of the time-intensity profiles combined with variations of the anisotropy and of the steepness of the proton spectrum allows one in general to define two components of an event which we term solar and interplanetary. We attempt to describe the results in terms of a radially variable efficiency of shock acceleration. Under the assumption that the shock is responsible not only for the interplanetary, but also for the solar component, we find evidence for a very efficient particle acceleration while the shock is still close to the Sun, e.g., in the corona. In addition, we discuss this series of strong flares and interplanetary shocks as a possible source for the formation of a superevent.  相似文献   

4.
High-energy proton (E p > 55 MeV) and electron (E e > 50 keV) events were observed by University of Iowa experiments on the satellites Explorer 33 and 35. The solar X-ray (2–12 Å) flares associated with the energetic proton events were found to have in general higher peak fluxes, considerably longer decay times (t) and smaller rise to decay time ratios (r) than the X-ray flares associated with the electron events. The most common decay times and rise to decay time ratios are: 80 t 100 min, 0.1 r 0.2 for the proton X-ray flares and t 20 min, 0.3 r 0.7 for the electron ones.  相似文献   

5.
Acceleration of protons in a reconnecting current sheet (RCS), which forms as a consequence of filament eruption in the corona, is considered as a possible mechanism of generation of the relativistic particles during the late phase of solar flares. In order to explain the acceleration of protons and heavier ions up to several GeV in a time of < 0.1 s, the transverse electric field outside the RCS must be taken into account. Physically, this field is always present as a consequence of electric charge separation owing to the difference in the electron and proton masses. The new effect demonstrated in this paper is that the transverse electric field efficiently locks nonthermal ions in the RCS, thus allowing their acceleration by the direct electric field in the RCS. The mechanism considered may be useful in construction of a model for generation of relativistic ions in large gamma-ray/proton flares.  相似文献   

6.
A crossed Yagi antenna array at 35 MHz was employed in conjunction with a polarization switch so as to enable spectral observations of solar noise storm activity in R and L polarizations. Intense decametric solar noise storms were recorded during the third week of November 1975 and fourth week of March 1976 with the help of a high resolution spectroscope operating near 35 MHz.The paper describes some of the new microscopic spectral features observed during these two noise storms. Three sets of high resolution dynamic spectra of decametric solar bursts, two of which are explained in terms of induced scattering of Langmuir waves by thermal ions and the third in terms of additional propagation effects through dense coronal irregularities, are presented. The microscopic bursts, classified as inverted U U and dots, represent small-scale (104 km) phenomena with durations of less than a second.Some burst spectra appear as chain of dots with individual bandwidths 40 kHz and durations 0.3 sec. It is suggested that the bandwidth of such dot emissions (40 kHz) provides an evidence that they might indeed be generated by the process of induced scattering of plasma waves which predicts emission bandwidth f × 10–3, where f is the center frequency.Some bursts are observed as a chain of striations showing curvature along the frequency axis which is attributed to dispersion in propagation delays through the dense coronal irregularities.  相似文献   

7.
Except for protons, the chemical composition of solar cosmic rays is very similar to the abundance of the elements at the photosphere of the Sun. If we consider the relative abundance ratio of protons to -particles (P/) at constant rigidity, this ratio is highly variable from one solar cosmic ray event to another. This ratio observed at the Earth, however, decreases monotonically with time from the onset of solar flares and, furthermore, is dependent on the heliocentric distance of the parent flares from the central meridian of the solar disk. P/'s which have been measured before the onset of SC geomagnetic storms change from 1.5 to 50 or more, being a function of the westward position of the source from the east limb of the Sun. These variations with respect to time and heliocentric distance suggest that the propagation of solar cosmic rays is strongly modulated in the interplanetary space. The major part of the -particles seem to propagate as if they are trapped within the magnetic clouds which produce SC geomagnetic and cosmic ray storms at the earth.The chemical composition and rigidity spectra of solar cosmic rays suggest that solar cosmic rays are mainly accelerated by the Fermi mechanism in solar flares. The observed variation of P/'s is produced mainly through the difference between the propagation characteristics of protons and -particles.NAS-NRC Associate with NASA.  相似文献   

8.
I. D. Palmer 《Solar physics》1972,27(2):466-477
Two low-energy ( 1 MeV) solar proton events which display a gradual intensity increase to a maximum near the time of an SSC, followed by an abrupt, large decrease, are interpreted in terms of a population of cosmic rays which are swept ahead of an interplanetary shock wave. A model which describes the variation with time of intensity and anisotropy at the Earth is developed using a Monte Carlo technique which traces the histories of particles released impulsively at the Sun. A good fit to each of the profiles observed at 0.6 to 0.9 MeV proton energies is obtained with a diffusion coefficient 2 × 1020 cm2 s) = 13.46 - 2.99 sin21 and a near perfect shock reflector.Now at University of California, LASL, Los Alamos, New Mexico.  相似文献   

9.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

10.
We examined solar energetic proton (SEP) events associated with intense H flares. We located these flares on the solar disk and obtained their distribution in heliographic longitude as well as their angular distance distribution with respect to the neutral lines corresponding to the heliospheric current sheet at 2.5R. We found that the SEP-associated H flares tend to occur in active regions at the feet of those helmet streamers which form the heliomagnetic equator and are related to coronal mass ejections (CMEs) and CME shocks. We discuss the possible role of flares, CMEs and CME shocks in generating SEPs.  相似文献   

11.
It is shown that escaping of solar flare energetic protons into interplanetary space as well as their relation to the flare gamma-ray emission depend on the parameter = 8p/B 0 2 , where p is the pressure of hot plasma and energetic particles and B 0 is the magnetic field in a flaring loop. If 1, the bulk of the energetic protons escape to the loss cone because of diffusion due to small-scale Alfvén-wave turbulence, and precipitate into the footpoints of the flaring loop. The flare then produces intense gamma-ray line emission and a weak flux of high energy protons in interplanetary space. If >*0.3-1.0, then fast eruption of hot plasma and energetic particles out of the flaring loop occurs, this being due to the flute instability or magnetic-field-plasma nonequilibrium. The flare then produces a comparatively weak gamma-radiation and rather intense proton fluxes in interplanetary space. We predict a modulation of the solar flare gamma-ray line emission with a period 1 s during the impulsive phase that is due to the MHD-oscillations of the energy release volume. The time lag of the gamma-ray peaks with respect to the hard X-ray peaks during a simultaneous acceleration of electrons and protons can be understood in terms of strong diffusion.  相似文献   

12.
This paper is designed to bring to the attention the fact that the effect of focusing of solar energetic particles is always essential as compared with scattering, no matter how small the value of the mean free path may be. That is why, an ordinary (focusing-free) diffusion approach can not be applied to the solar cosmic ray transport. In the case of high-energy solar particles, the focused diffusion is demonstrated to lead to a power law decay of energetic particle intensity much like an ordinary diffusion. However, the power law index of the decay is renormalized by the focusing.  相似文献   

13.
14.
An essential part in the mechanics under study is taking into consideration the effect of motions of the Universe objects upon that of an individual one surrounded by them including those infinitely far from it. Only macro-objects of the Universe are meant here.
Zusammenfassung Ein wesentlicher Bestandteil der Mechanik unter unserer Betrachtung ist die Berechnung des Einflusses auf die Bewegung eines individuellen Objektes von Bewegungen der Universum Objekte die es umringen einschließlich jene Objekte, die unendlich entfernt sind. Nur Makroobjekte des Weltalles sind in der Absicht dabei.

, . .
  相似文献   

15.
16.
17.
18.
19.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

20.
The results of the observations to search gamma-ray sources with the energy greater than 2×1012 eV, which were made in Crimean Astrophysical Observatory during the years 1969–73 are presented. A technique of the detection of the EAS Cerenkov flashes was used.The quality of the data obtained is analysed. The criteria for the selection of the data free from meteorological variations are considered.It was shown that two objects, namely, Cyg X-3 and Cas -1, may be the sources of high-energy gamma quanta. It is probable that the object with the coordinates =05h15m, =+1° is the source of gamma-rays as well. An unidentified object Cas -1 is variable: gamma-ray flux was observed twice — in Sepember–October 1971 and in December 1972. It is possible that the flux from Cyg X-3 has a period of 4.8 hr.
I I , I I , - >2.1012 . I . I , I I, I ., - -1 Cyg -3- -I . , =0515 ·=+1° -.I -1 I: I J I- - 1971 1972 . Cyg -3, , - T=4.8 .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号